Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 893-902    DOI: 10.1016/j.jia.2024.06.013
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut

Xiukun Li1*, Jing Hao1*, Hongtao Deng1*, Shunli Cui1, Li Li2, Mingyu Hou1, Yingru Liu1, Lifeng Liu1#

1 State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory for Crop Germplasm Resources of Hebei/North China Key Laboratory for Crop Germplasm Resources, Ministry of Education/College of Agronomy, Hebei Agricultural University, Baoding 071001, China

2 School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China

 Highlights  
A total of 46 QTLs and 115 SNPs associated with 100-pod weight (HPW), 100-seed weight (HSW), and shelling percentage (SP) were identified through combined linkage and association analyses. 
The locus qSP7, which influences SP, was consistently detected across two populations.
Three KASP markers tightly linked to major QTL regions were developed and can be utilized for molecular marker-assisted breeding of peanut yield.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
高产一直是花生育种的首要目标。百果重(HPW)、百仁重(HSW)和出仁率(SP)是花生产量的重要组成部分。本研究旨在通过对“四粒红”(多粒型)与“冀农黑3号”(普通型)杂交的重组自交系(RILs)进行重测序,构建高密度连锁图谱。该图谱由4499个bin组成,分布在20条染色体上,全长1712.32 cM,平均标记间距离为0.38 cM。在3种环境中共鉴定出46个QTL位点。其中,主效QTL位点qHPW5.2qHPW18.1qSP7.1qSP8.1qSP8.2qSP18.1qSP18.2的表型变异解释分别为12.04、11.41、16.53、24.17、10.49、10.82和29.89%。的14个QTL在多个环境中被检测到,认为是稳定的QTL。1个QTL (qHPW7qHSW7.1qSP7)与3个性状均相关,对HPW、HSW和SP的表型变异解释分别为8.91、9.04和16.53%。利用美国微核心种质进行全基因组关联来验证QTL定位的准确性。在两种环境中,共检测到115个SNP与百果重、百仁重和出仁率显著相关。6个SNP与2个性状同时相关,平均解释13.84%的表型变异。结合两个定位群体,关联分析群体中在 7号染色体上与SP显著相关的SNP,AX-176802178,同时位于RIL群体主效QTL qSP7置信区间内。此外,还开发了3个KASP标记,并在花生农家种和品种中进行了验证。这些QTL为了解花生HPW、HSW和SP的遗传基础提供了有价值的见解,并为花生标记辅助育种提供有用的分子标记。


Abstract  

High yield remains the primary objective of peanut breeding.  Key yield components, 100-pod weight (HPW), 100-seed weight (HSW), and shelling percentage (SP), are critical determinants of overall productivity.  This study aimed to construct a high-density linkage map using resequencing data from recombinant inbred lines (RILs) derived from a cross between ‘Silihong’ (Arachis hypogaea var. fastigiate) and ‘Jinonghei 3’ (Ahypogaea var. hypogaea).  The resulting map comprised 4,499 bins distributed across 20 chromosomes, spanning a total length of 1,712.32 cM with an average inter-marker distance of 0.38 cM.  A total of 46 quantitative trait loci (QTLs) were identified across three environments.  Major QTLs, including qHPW5.2, qHPW18.1, qSP7.1, qSP8.1, qSP8.2, qSP18.1, and qSP18.2, explained phenotypic variation (PVE) of 12.04, 11.41, 16.53, 24.17, 10.49, 10.82, and 29.89%, respectively.  Fourteen QTLs detected across multiple environments were considered stable.  Notably, one QTL region (qHPW7, qHSW7.1, and qSP7) was associated with all three traits, accounting for PVE values of 8.91, 9.04, and 16.53% for HPW, HSW, and SP, respectively.  To validate the accuracy of QTL mapping, a genome-wide association study (GWAS) was conducted using the US mini-core collection.  Across two environments, 115 single-nucleotide polymorphisms (SNPs) were significantly associated with HPW, HSW, and SP in the association panel.  Six SNPs were linked to two traits, explaining an average phenotypic variation of 13.84%.  Integration of both mapping populations revealed that AX-176802178, detected on chromosome 7 in the association panel and associated with SP, was located within the confidence interval of QTL qSP7 defined by the recombined inbred lines (RIL) population.  Furthermore, three KASP markers were developed and validated in peanut landraces and cultivated varieties.  These findings provide valuable insights into the genetic architecture underlying HPW, HSW, and SP, and offer useful molecular tools for marker-assisted selection in peanut breeding programs.

Keywords:  Arachis hypogaea L.       GWAS        KASP        QTL mapping        shelling percentage  
Received: 11 March 2024   Accepted: 30 May 2024 Online: 27 June 2024  
Fund: This study was financially sponsored by the National Natural Science Foundation of China (320720977), the China Agriculture Research System (CARS-13), the Hebei Agriculture Research System, China (HBCT2024040205), the S&T Program of Hebei, China (23567601H), the Peanut Modern Seed Industry Technology Innovation Team in Hebei Province, China (21326316D-2), the State Key Laboratory of North China Crop Improvement and Regulation, China (NCCIR2020RC-2), and the Startup Fund of Hebei Agricultural University, China (YJ2020044).
About author:  #Correspondence Lifeng Liu, E-mail: liulifeng@hebau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Xiukun Li, Jing Hao, Hongtao Deng, Shunli Cui, Li Li, Mingyu Hou, Yingru Liu, Lifeng Liu. 2026. Identification of a pleiotropic QTL and development of KASP markers for 100-pod weight, 100-seed weight, and shelling percentage in peanut. Journal of Integrative Agriculture, 25(3): 893-902.

Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics48, 438–446.

Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaeaNature Genetics51, 877–884.

Carter E T , Rowland D L, Tillman B L, Erickson J E, Grey T L, Gillett-Kaufman J L, Clark M W. 2017. Pod maturity in the shelling process. Peanut Science44, 26–34.

Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, Jackson S A, Peggy O A. 2020. Pod and seed trait QTL identification to assist breeding for peanut market preferences. G3 (Bethesda), 10, 2297–2315.

Chen C Y, Barkley N A, Wang M L, Holbrook C C, Dang P M. 2014. Registration of purified accessions for the U.S. peanut mini-core germplasm collection. Journal of Plant Registrations8, 77–85.

Chen Z L, Wang B B, Dong X M, Liu H, Ren L H. 2014. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics15, 433.

Chu Y, Chee P, Isleib T G, Holbrook C C, Ozias-Akins P. 2020. Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Molecular Breeding40, 6.

Dash S, Cannon E K S, Kalberer S R, Farmer A D, Cannon S B. 2016. Peanutbase and Other Bioinformatic Resources for Peanut. AOCS Press, Urbana, USA. pp. 241–252.

Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. 2020. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnology Journal18, 1457–1471.

Holland J B. 2007. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology10, 156–161.

Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B. 2015. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics128, 1103–1115.

Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T. 2009. High-throughput genotyping by whole-genome resequencing. Genome Research19, 1068–1076.

Jiang H. 2006. Descriptors and data standard for peanut (Arachis spp.). China Agriculture Press, Beijing. 11–36. (in Chinese)

Kai W, Li M, Hakon H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research16, e164.

Kunta S, Chu Y, Levy Y, Harel A, Hovav R. 2022. Identification of a major locus for flowering pattern sheds light on plant architecture diversification in cultivated peanut. Theoretical and Applied Genetics135, 1767–1777.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. Genome project data processing S: The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079.

Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen C Y. 2022. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics23, 1–13.

Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J. 2009a. SNP detection for massively parallel whole-genome resequencing. Genome Research19, 1124–1132.

Li R, Yu C, Lam T W, Yiu S M, Kristiansen K, Wang J. 2009b. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics25, 1966–1967.

Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. 2022. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). The Crop Journal10, 820–829.

Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T. 2010. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the United States of America107, 19585–19590.

Lucia R, Gomes F, Celis A, Lopes A. 2005. Correlations and path analysis in peanut. Crop Breeding & Applied Biotechnology5, 105–110.

Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. 2018. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics131, 267–282.

Luo H, Pandey M K, Khan A W, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N, Lei Y, Liao B, Varshney R K, Jiang H. 2019. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal17, 1248–1260.

Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J. 2017. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics130, 1635–1648.

Meng X, Zhang J, Cui S, Chen C Y, Mu G, Hou M, Yang X, Liu L. 2021. QTL mapping and QTL×environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.). Acta Agronomica Sinica47, 1874–1890. (in Chinese)

Meuwissen T, Goddard M. 2010. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics185, 622–623.

Pawan K, Pandey M K, Wang H, Feng S, Qiao L, Culbreath A K, Sandip K, Wang J, Corley H C, Zhuang W. 2016. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE11, e0158452.

Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M, Radhakrishnan T, Bertioli D J, Knapp S J. 2011. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics122, 1119–1132.

Robledo G, Lavia G I, Seijo G. 2009. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics118, 1295–1307.

Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson M D, Stritt F, Pauly M, Lee M Y, Mortimer J C, Scheller H V, Mitchell R A C, Voiniciuc C, Saulnier L, Chateigner-Boutin A L. 2021. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and ArabidopsisPlant Science302, 110693.

Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL × environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal7, 249–260.

Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. 2022. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theoretical and Applied Genetics135, 1779–1795.

Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z. 2017. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theoretical and Applied Genetics130, 1011–1029.

Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. 2019. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology19, 537.

Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics51, 865–876.

Zou C, Wang P, Xu Y. 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal14, 1941–1955.

[1] Cong Huang, Min Zheng, Yizhong Huang, Liping Cai, Xiaoxiao Zou, Tianxiong Yao, Xinke Xie, Bin Yang, Shijun Xiao, Junwu Ma, Lusheng Huang. Unraveling genetic underpinnings of purine content in pork[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1099-1113.
[2] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[3] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[4] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[5] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[6] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[7] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[8] Lei Wu, Yujie Chang, Lanfen Wang, Shumin Wang, Jing Wu. Genome-wide association study dissecting drought resistance-associated loci based on physiological traits in common bean[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3657-3671.
[9] Liang Ma, Tingli Hu, Meng Kang, Xiaokang Fu, Pengyun Chen, Fei Wei, Hongliang Jian, Xiaoyan Lü, Meng Zhang, Yonglin Yang. Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3472-3486.
[10] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[11] ZHANG Zhi-peng, LI Zhen, HE Fang, LÜ Ji-juan, XIE Bin, YI Xiao-yu, LI Jia-min, LI Jing, SONG Jing-han, PU Zhi-en, MA Jian, PENG Yuan-ying, CHEN Guo-yue, WEI Yu-ming, ZHENG You-liang, LI Wei. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3380-3393.
No Suggested Reading articles found!