Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3623-3640    DOI: 10.1016/j.jia.2024.02.013
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Ovule number as a rising star for regulating seed yield: Hope or hype
Shahid Ullah Khan1, 2, 3*, Ahmad Ali4*, Sumbul Saeed5, Yonghai Fan1, 2, Ali Shehazd1, 2, Hameed Gul6, Shah Fahad7, 8#, Kun Lu1, 2#
1 Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
2 Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
3 Women Medical and Dental College, Khyber Medical University, Peshawar, KPK 22020, Pakistan
4 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
5 School of Environment and Science, Griffith University, Nathan QLD 4111, Australia
6 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
7 Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
8 Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rapeseed (Brassica napus L.) is the second most widely grown premium oilseed crop globally, mainly for its vegetable oil and protein meal.  One of the main goals of breeders is producing high-yield rapeseed cultivars with sustainable production to meet the requirements of the fast-growing population.  Besides the pod number, seeds per silique (SS), and thousand-seed weight (TSW), the ovule number (ON) is a decisive yield determining factor of individual plants and the final seed yield.  In recent years, tremendous efforts have been made to dissect the genetic and molecular basis of these complex traits, but relatively few genes or loci controlling these traits have been reported thus far.  This review highlights the updated information on the hormonal and molecular basis of ON and development in model plants (Arabidopsis thaliana).  It also presents what is known about the hormonal, molecular, and genetic mechanism of ovule development and number, and bridges our understanding between the model plant species (Athaliana) and cultivated species (Bnapus).  This report will open new pathways for primary and applied research in plant biology and benefit rapeseed breeding programs.  This synopsis will stimulate research interest to further understand ovule number determination, its role in yield improvement, and its possible utilization in breeding programs. 

Keywords:  Brassica napus       ovule number       genetics       ovule development       hormonal signaling  
Received: 01 September 2023   Accepted: 29 December 2023
Fund: 
This work was supported by the National Key Research and Development Program of China (2022YFD1200400), the National Natural Science Foundation of China (32272111), the Special fund for youth team of the Southwest Universities, China (SWU-XJPY202306), the Chongqing Natural Science Foundation, China (CSTB2024NSCQ-LZX0012), the Chongqing Modern Agricultural Industry Technology System, China (COMAITS202304), the Chongqing Germplasm Resource Bank, China (ZWZZ2020004), and the Germplasm Creation Special Program of Southwest University, China.
About author:  #Correspondence Kun Lu, E-mail: drlukun@swu.edu.cn; Shah Fahad, E-mail: shahfahad@awkum.edu.pk * These authors contributed equally to this study.

Cite this article: 

Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu. 2024. Ovule number as a rising star for regulating seed yield: Hope or hype. Journal of Integrative Agriculture, 23(11): 3623-3640.

Ahmad A, Li W, Zhang H, Wang H, Wang P, Jiao Y, Zhao C, Yang G, Hong D. 2023. Linkage and association mapping of ovule number per ovary (ON) in oilseed rape (Brassica napus L.). Molecular Breeding43, 11.

Alonso-Blanco C, Blankestijn-de Vries H, Hanhart C J, Koornneef M. 1999. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thalianaProceedings of the National Academy of Sciences of the United States of America96, 4710–4717.

Armenta-Medina A, Gillmor C S. 2019. Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Current Topics in Developmental Biology131, 497–543.

Azhakanandam S, Nole-Wilson S, Bao F, Franks R G. 2008. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiology146, 1165–1181.

Baker C C, Sieber P, Wellmer F, Meyerowitz E M. 2005. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in ArabidopsisCurrent Biology15, 303–315.

Balasubramanian S, Schneitz K. 2000. NOZZLE regulates proximal–distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thalianaDevelopment127, 4227–4238.

Balasubramanian S, Schneitz K. 2002. NOZZLE links proximal–distal and adaxial–abaxial pattern formation during ovule development in Arabidopsis thalianaDevelopment129, 4291–4300.

Banks H, Himanen I, Lewis G P. 2010. Evolution of pollen, stigmas and ovule numbers at the caesalpinioid-mimosoid interface (Fabaceae). Botanical Journal of the Linnean Society162, 594–615.

Bao F, Azhakanandam S, Franks R G. 2010. SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in ArabidopsisPlant Physiology152, 821–836.

Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, Tornero P, Alonso J M, López-Díaz I, Gómez M D, Perez-Amador M A. 2020a. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: Two plant species, two molecular mechanisms. The Plant Journal102, 1026–1041.

Barro-Trastoy D, Dolores Gómez M D, Tornero P, Perez-Amador M A. 2020b. On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences39, 431–456.

Bartrina I, Otto E, Strnad M, Werner T, Schmülling T. 2011. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thalianaThe Plant Cell23, 69–80.

Basunanda P, Radoev M, Ecke W, Friedt W, Becker H, Snowdon R J. 2010. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics120, 271–281.

Becker A. 2020. A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15–22.

Bencivenga S, Simonini S, Benková E, Colombo L. 2012. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in ArabidopsisThe Plant Cell24, 2886–2897.

Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell115, 591–602.

van Berkel K, de Boer R J, Scheres B, ten Tusscher K. 2013. Polar auxin transport: Models and mechanisms. Development140, 2253–2268.

Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. 2011. Model for the regulation of Arabidopsis thaliana leaf margin development. Proceedings of the National Academy of Sciences of the United States of America108, 3424–3429.

Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in ArabidopsisThe Plant Cell19, 2544–2556.

Brumos J, Robles L M, Yun J, Vu T C, Jackson S, Alonso J M, Stepanova A N. 2018. Local auxin biosynthesis is a key regulator of plant development. Developmental Cell47, 306–318.

Ceccato L, Masiero S, Sinha Roy D, Bencivenga S, Roig-Villanova I, Ditengou F A, Palme K, Simon R, Colombo L. 2013. Maternal control of PIN1 is required for female gametophyte development in ArabidopsisPLoS ONE8, e66148.

Cheng Y, Dai X, Zhao Y. 2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in ArabidopsisGenes & Development20, 1790–1799.

Cucinotta M, Colombo L, Roig-Villanova I J. 2014. Ovule development, a new model for lateral organ formation. Frontiers in Plant Science5, 117.

Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater M M, Colombo L. 2020. Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany71, 2479–2489.

Cucinotta M, Manrique S, Cuesta C, Benkova E, Novak O, Colombo L. 2018. CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in ArabidopsisJournal of Experimental Botany69, 5169–5176.

Cucinotta M, Manrique S, Guazzotti A, Quadrelli N E, Mendes M A, Benkova E, Colombo L. 2016. Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development143, 4419–4424.

Davière J M, Achard P. 2016. A pivotal role of DELLAs in regulating multiple hormone signals. Molecular Plant9, 10–20.

Enugutti B, Kirchhelle C, Oelschner M, Torres Ruiz R A, Schliebner I, Leister D, Schneitz K. 2012. Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences of the United States of America109, 15060–15065.

Enugutti B, Schneitz K. 2013. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology13, 2.

Fridman Y, Savaldi-Goldstein S. 2013. Brassinosteroids in growth control: How, when and where. Plant Science209, 24–31.

Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, Cuesta C, Simaskova M, Benkova E, Kamiuchi Y, Aida M, Weijers D. 2013. An integrative model of the control of ovule primordia formation. The Plant Journal76, 446–455.

Gallego-Giraldo C, Hu J, Urbez C, Gómez M D, Sun T P, Perez-Amador M A. 2014. Role of the gibberellin receptors GID 1 during fruit-set in ArabidopsisThe Plant Journal79, 1020–1032.

Gómez M D, Barro-Trastoy D, Escoms E, Saura-Sánchez M, Sánchez I, Briones-Moreno A, Vera-Sirera F, Carrera E, Ripoll J J, Yanofsky M F, Lopez-Diaz I, Alonso J M, Perez-Amador M A. 2018. Gibberellins negatively modulate ovule number in plants. Development145, dev163865.

Gómez M D, Barro-Trastoy D, Fuster-Almunia C, Tornero P, Alonso J M, Perez-Amador M A. 2020. Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in ArabidopsisJournal of Experimental Botany71, 7059–7072.

Gómez M D, Fuster-Almunia C, Ocana-Cuesta J, Alonso J M, Perez-Amador M A. 2019. RGL2 controls flower development, ovule number and fertility in ArabidopsisPlant Science281, 82–92.

Gómez M D, Urbez C, Perez-Amador M A, Carbonell J. 2011. Characterization of constricted fruit (ctf) mutant uncovers a role for AtMYB117/LOF1 in ovule and fruit development in Arabidopsis thalianaPLoS ONE6, e18760.

Gómez M D, Ventimilla D, Sacristan R, Perez-Amador M A. 2016. Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiology172, 2403–2415.

Gonçalves B, Hasson A, Belcram K, Cortizo M, Morin H, Nikovics K, Vialette-Guiraud A, Takeda S, Aida M, Laufs P, Arnaud N. 2015. A conserved role for CUP-SHAPED COTYLEDON genes during ovule development. The Plant Journal83, 732–742.

Hashida T, Nakatsuji R, Budahn H, Schrader O, Peterka H, Fujimura T, Kubo N, Hirai M. 2013. Construction of a chromosome-assigned, sequence-tagged linkage map for the radish, Raphanus sativus L. and QTL analysis of morphological traits. Breeding Science63, 218–226.

Hashimoto K, Miyashima S, Sato-Nara K, Yamada T, Nakajima K. 2018. Functionally diversified members of the MIR165/6 gene family regulate ovule morphogenesis in Arabidopsis thalianaPlant and Cell Physiology59, 1017–1026.

Heisler M G, Byrne M E. 2020. Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology53, 73–79.

Huang H Y, Jiang W B, Hu Y W, Wu P, Zhu J Y, Liang W Q, Wang Z Y, Lin W H. 2013. BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Molecular Plant6, 456–469.

Hwang I, Sheen J, Müller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology63, 353–380.

Ishida T, Aida M, Takada S, Tasaka M. 2000. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thalianaPlant and Cell Physiology41, 60–67.

Jia D, Chen L G, Yin G, Yang X, Gao Z, Guo Y, Sun Y, Tang W. 2020. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. Journal of Integrative Plant Biology62, 1093–1111.

Jiao Y, Zhang K, Cai G, Yu K, Amoo O, Han S, Zhao X, Zhang H, Hu L, Wang B, Fan C, Zhou Y. 2021. Fine mapping and candidate gene analysis of a major locus controlling ovule abortion and seed number per silique in Brassica napus L. Theoretical and Applied Genetics134, 2517–2530.

Jung J H, Park C M. 2007. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in ArabidopsisPlanta225, 1327–1338.

Kawamoto N, Del Carpio D P, Hofmann A, Mizuta Y, Kurihara D, Higashiyama T, Uchida N, Torii K U, Colombo L, Groth G, Simon R. 2020. A peptide pair coordinates regular ovule initiation patterns with seed number and fruit size. Current Biology30, 4352–4361.

Kelley D R, Arreola A, Gallagher T L, Gasser C S. 2012. ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in ArabidopsisDevelopment139, 1105–1109.

Kelley D R, Gasser C S. 2009. Ovule development: Genetic trends and evolutionary considerations. Sexual Plant Reproduction22, 229–234.

Khan S U, Yangmiao J, Liu S, Zhang K, Khan M H U, Zhai Y, Olalekan A, Fan C, Zhou Y. 2019. Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products142, 111877.

Klucher K M, Chow H, Reiser L, Fischer R L.1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2The Plant Cell8, 137–153.

Kozlowski J, Stearns S C. 1989. Hypotheses for the production of excess zygotes: Models of bet-hedging and selective abortion. Evolution43, 1369–1377.

Krizek B A, Blakley I C, Ho Y Y, Freese N, Loraine A E. 2020. The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal103, 752–768.

Laufs P, Peaucelle A, Morin H, Traas J. 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development131, 4311–4322.

Leyser O. 2018. Auxin signaling. Plant Physiology176, 465–479.

Li B F, Yu S X, Hu L Q, Zhang Y J, Zhai N, Xu L, Lin W H. 2018. Simple culture methods and treatment to study hormonal regulation of ovule development. Frontiers in Plant Science9, 784.

Li L C, Qin G J, Tsuge T, Hou X H, Ding M Y, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu L J. 2008. SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in ArabidopsisNew Phytologist179, 751–764.

Liao S, Wang L, Li J, Ruan Y L. 2020. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiology183, 1126–1144.

Liu Z, Franks R G, Klink V P. 2000. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTAThe Plant Cell12, 1879–1891.

Lohmann D, Stacey N, Breuninger H, Jikumaru Y, Müller D, Sicard A, Leyser O, Yamaguchi S, Lenhard M. 2010. SLOW MOTION is required for within-plant auxin homeostasis and normal timing of lateral organ initiation at the shoot meristem in ArabidopsisThe Plant Cell22, 335–348.

Mallory A C, Dugas D V, Bartel D P, Bartel B. 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Current Biology14, 1035–1046.

Marsch-Martínez N, de Folter S. 2016. Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology29, 104–114.

Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo V M, de Folter S. 2012. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal72, 222–234.

Matilla A J. 2019. Seed coat formation: Its evolution and regulation. Seed Science Research29, 215–226.

McAbee J M, Hill T A, Skinner D J, Izhaki A, Hauser B A, Meister R J, Venugopala Reddy G, Meyerowitz E M, Bowman J L, Gasser C S. 2006. ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal46, 522–531.

Meister R J, Kotow L M, Gasser C S. 2002. SUPERMAN attenuates positive INNER NO OUTER autoregulation to maintain polar development of Arabidopsis ovule outer integuments. Development129, 4281–4289.

Mizukami Y, Fischer R L. 2000. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the United States of America97, 942–947.

Morffy N, Strader L C. 2020. Old Town Roads: Routes of auxin biosynthesis across kingdoms. Current Opinion in Plant Biology55, 21–27.

Mutte S K, Kato H, Rothfels C, Melkonian M, Wong G K, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. eLife7, e33399.

Nahar M A U, Ishida T, Smyth D R, Tasaka M, Aida M. 2012. Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thalianaPlant and Cell Physiology53, 1134–1143.

Nemhauser J L, Feldman L J, Zambryski P C. 2000. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development127, 3877–3888.

Nole-Wilson S, Azhakanandam S, Franks R G. 2010. Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Developmental Biology346, 181–195.

Petrella R, Gabrieli F, Cavalleri A, Schneitz K, Colombo L, Cucinotta M J D. 2022. Pivotal role of STIP in ovule pattern formation and female germline development in Arabidopsis thalianaDevelopment149, dev201184.

Phillips A R, Evans M M. 2020. Maternal regulation of seed growth and patterning in flowering plants. Current Topics in Developmental Biology140, 257–282.

Pinyopich A, Ditta, G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature424, 85–88.

Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado A I. 2019. Brassinosteroid signaling in plant development and adaptation to stress. Development146, dev151894.

Qadir M, Qin L, Ye J, Ahmad N, Wang X, Shi J, Wang H. 2022. Genetic dissection of the natural variation of ovule number per ovary in oilseed rape germplasm (Brassica napus L.). Frontiers in Plant Science13, 999790.

Qadir M, Wang X, Shah S R U, Zhou X R, Shi J, Wang H. 2021. Molecular network for regulation of ovule number in plants. International Journal of Molecular Sciences22, 12965.

Raboanatahiry N, Chao H, He J, Li H, Yin Y, Li M. 2022. Construction of a quantitative genomic map, identification and expression analysis of candidate genes for agronomic and disease-related traits in Brassica napusFrontiers in Plant Science13, 862363.

Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn G W, Fischer R L. 1995. The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell83, 735–742.

Reyes-Olalde J I, Zúñiga-Mayo V M, Serwatowska J, Chavez Montes R A, Lozano-Sotomayor P, Herrera-Ubaldo H, Gonzalez-Aguilera K L, Ballester P, Ripoll J J, Ezquer I, Paolo D, Heyl A, Colombo L, Yanofsky M F, Ferrandiz C, Marsch-Martínez N, de Folter S. 2017. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genetics13, e1006726.

Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. 2002. Prediction of plant microRNA targets. Cell110, 513–520.

Rizza A, Jones A M. 2019. The makings of a gradient: Spatiotemporal distribution of gibberellins in plant development. Current Opinion in Plant Biology47, 9–15.

Rodríguez-Cazorla E, Ortuño-Miquel S, Candela H, Bailey-Steinitz L J, Yanofsky M F, Martínez-Laborda A, Ripoll J J, Vera A. 2018. Ovule identity mediated by pre-mRNA processing in ArabidopsisPLoS Genetics14, e1007182.

Rodríguez-Cazorla E, Ripoll J J, Ortuño-Miquel S, Martínez-Laborda A, Vera A. 2020. Dissection of the Arabidopsis HUA-PEP gene activity reveals that ovule fate specification requires restriction of the floral A-function. New Phytologist227, 1222–1234.

Schneitz K, Balasubramanian S, Schiefthaler U. 1998. Organogenesis in plants: The molecular and genetic control of ovule development. Trends in Plant Science3, 468–472.

Schneitz K, Hülskamp M, Pruitt R E. 1995. Wild-type ovule development in Arabidopsis thaliana: A light microscope study of cleared whole-mount tissue. The Plant Journal7, 731–749.

Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J. 2009. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napusGenetics182, 851–861.

Shirley N J, Aubert M K, Wilkinson L G, Bird D C, Lora J, Yang X, Tucker M R. 2019. Translating auxin responses into ovules, seeds and yield: Insight from Arabidopsis and the cereals. Plant Biology61, 310–336.

Šimášková M, O’Brien J A, Khan M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen J M A, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik K, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E. 2015. Cytokinin response factors regulate PIN-FORMED auxin transporters. Nature Communications6, 8717.

Simon M K, Skinner D J, Gallagher T L, Gasser C S. 2017. Integument development in Arabidopsis depends on interaction of YABBY protein INNER NO OUTER with coactivators and corepressors. Genetics207, 1489–1500.

Smyth D R, Bowman J L, Meyerowitz E M. 1990. Early flower development in ArabidopsisThe Plant Cell2, 755–767.

Sohlberg J J, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E. 2006. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal47, 112–123.

Tischner T, Allphin L, Chase K, Orf J H, Lark K G. 2003. Genetics of seed abortion and reproductive traits in soybean. Crop Science43, 464–473.

Villanueva J M, Broadhvest J, Hauser B A, Meister R J, Schneitz K, Gasser C S. 1999. INNER NO OUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes & Development13, 3160–3169.

Wang Y, Jiao Y. 2018. Auxin and above-ground meristems. Journal of Experimental Botany69, 147–154.

Weijers D, Nemhauser J, Yang Z. 2018. Auxin: Small molecule, big impact. Journal of Experimental Botany69, 133–136.

Wynn A N, Seaman A A, Jones A L, Franks R G. 2014. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. Frontiers in Plant Science5, 130.

Yamada T, Sasaki Y, Hashimoto K, Nakajima K, Gasser C S. 2016. CORONAPHABULOSA and PHAVOLUTA collaborate with BELL1 to confine WUSCHEL expression to the nuceLlus in Arabidopsis ovules. Development143, 422–426.

Yamaguchi N, Wu M F, Winter C M, Berns M C, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek B A, Wagner D. 2013. A molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell24, 271–282.

Yu S X, Jiang Y T, Lin W H. 2022. Ovule initiation: the essential step controlling offspring number in ArabidopsisJournal of Integrated Plant Biology, 64, 1469–1486.

Yuan J, Kessler S A. 2019. A genome-wide association study reveals a novel regulator of ovule number and fertility in Arabidopsis thalianaPLoS Genetics15, e1007934.

Žádníková P, Simon R. 2014. How boundaries control plant development. Current Opinion in Plant Biology17, 116–125.

Zhang L, Yang G, Liu P, Hong D, Li S, He Q. 2011. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theoretical and Applied Genetics122, 21–31.

Zhou J J, Luo J. 2018. The PIN-FORMED auxin efflux carriers in plants. International Journal of Molecular Sciences19, 2759.

Zu S H, Jiang Y T, Chang J H, Zhang Y J, Xue H W, Lin W H. 2022. Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in ArabidopsisJournal of Integrative Plant Biology64, 702–716.

[1] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[2] Qianwei Zhang, Yuanyi Mao, Zikun Zhao, Xin Hu, Ran Hu, Nengwen Yin, Xue Sun, Fujun Sun, Si Chen, Yuxiang Jiang, Liezhao Liu, Kun Lu, Jiana Li, Yu Pan.

A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1481-1493.

[3] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[4] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[5] XUE Yu-fei, INKABANGA TSEKE Alain, YIN Neng-wen, JIANG Jia-yi, ZHAO Yan-ping, LU Kun, LI Jia-na, DING Yan-song, ZHANG Shi-qing, CHAI You-rong. Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica)[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3810-3815.
[6] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
[7] LIANG Yong-xuan, DU Su-jie, ZHONG Yu-jun, WANG Qi-jing, ZHOU Qiong, WAN Fang-hao, GUO Jian-yang, LIU Wan-xue. Molecular phylogeny and identification of agromyzid leafminers in China, with a focus on the worldwide genus Liriomyza (Diptera: Agromyzidae) [J]. >Journal of Integrative Agriculture, 2023, 22(10): 3115-3134.
[8] CHU Dong, QU Wan-mei, GUO Lei. Invasion genetics of alien insect pests in China: Research progress and future prospects[J]. >Journal of Integrative Agriculture, 2019, 18(4): 748-757.
[9] ZHU Yuan-yuan, ZOU Xing-qi, BAO Hui-fang, SUN Pu, MA Xue-qing, LIU Zai-xin, FAN Hong-jie, ZHAO Qi-zu. Insertion site of FLAG on foot-and-mouth disease virus VP1 G-H loop affects immunogenicity of FLAG[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1655-1666.
[10] HUANG Rui-dong . Research progress on plant tolerance to soil salinity and alkalinity in sorghum[J]. >Journal of Integrative Agriculture, 2018, 17(04): 739-746.
[11] LI Zai-yun, WANG You-ping. Cytogenetics and germplasm enrichment in Brassica allopolyploids in China[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2698-2708.
[12] LUO Jing-yao, PAN Xiao-lei, PENG Tie-cheng, CHEN Yun-yun, ZHAO Hui, MU Lei, PENG Yun, HE Rui, TANG Hua. DNA methylation patterns of banana leaves in response to Fusarium oxysporum f. sp. cubense tropical race 4[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2736-2744.
[13] RAN Li-ping, FANG Ting-ting, RONG Hao, JIANG Jin-jin, FANG Yu-jie, WANG You-ping. Analysis of cytosine methylation in early generations of resynthesized Brassica napus[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1228-1238.
[14] Niks R E. How Specific is Non-Hypersensitive Host and Nonhost Resistance of Barley to Rust and Mildew Fungi?[J]. >Journal of Integrative Agriculture, 2014, 13(2): 244-254.
[15] Ravi Prakash Singh, Sybil Herrera-Foessel, Julio Huerta-Espino, Sukhwinder Singh, Sridhar Bhavani, Caixia Lan , Bhoja Raj Basnet. Progress Towards Genetics and Breeding for Minor Genes Based Resistance to Ug99 and Other Rusts in CIMMYT High-Yielding Spring Wheat[J]. >Journal of Integrative Agriculture, 2014, 13(2): 255-261.
No Suggested Reading articles found!