Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (5): 1704-1717    DOI: 10.1016/j.jia.2024.05.016
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield

Ying Zhang1*, Rui Wang1*#, Tianshun Luo1, Jingyan Fu1, Meng Yin1, Maolin Wang1, Yun Zhao1, 2#

1 Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu 610065, China

2 Science and Technology Innovation Center of Sichuan Modern Seed Industry Group, Chengdu 611100, China

 Highlights 
Edition of the 7th exon of BnaNRAMP1 could balance the performances to cadmium (Cd) stress and normal agronomic traits of Brassica napus.
BnaNRAMP1-editing germplasm K140-22 showed a significant potential in rapeseed breeding for low Cd accumulation
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
甘蓝型油菜是种植于全世界的最重要的油料作物之一,土壤镉(Cd)污染显著影响其产量和种子品质。甘蓝型油菜具有强镉吸附能力,因此创制低镉积累的种质资源是缓解这一挑战的重要策略。本研究中,我们分别靶向BnaNRAMP1的三个不同外显子区,对其在油菜进行基因编辑,通过基因编辑植株的系列表型鉴定筛选出镉积累显著降低且产量不受显著影响的油菜种质资源K140-22。此外,通过对K140-22根和地上部的抗氧化防御系统的相关酶活进行测定,发现其抗氧化活性增强,这有助于阐明植物耐受重金属胁迫的分子机制。值得注意的是,K140-22的产量性状和种子品质相较于野生型均没有显著差异,显示出其在镉污染土壤提高油菜经济价值及低镉积累品种选育中的应用潜力。


Abstract  
Brassica napus, one of the most important oil crops cultivated globally, is severely impacted by prolonged soil contamination with cadmium (Cd), resulting in decreased yields and poor seed quality.  This crop exhibits a high adsorption capacity for Cd, making creating seed resources with low Cd accumulation an essential strategy to alleviate this challenge.  To address this issue, we genetically edited BnaNRAMP1 in Bnapus by targeting three different exon regions, resulting in new germplasm resources with significant differences in Cd accumulation capacity and unaffected yield.  Among these, the mutant K140-22, specifically targeting the 7th exon, is distinguished by its substantially reduced Cd accumulation.  Further, enzyme assays of the antioxidant defense system in both roots and shoots of K140-22 revealed its enhanced antioxidant activity, which contributes to elucidating the molecular mechanisms of plant tolerance to heavy metal stress.  Remarkably, this mutant also maintained equivalent agronomic traits and seed quality, which highlights its potential as a germplasm resource for rapeseed breeding for low Cd accumulation and elevating rapeseed economic value in Cd-contaminated soil.


Keywords:  Brassica napus       Cd accumulation       BnaNRAMP1-edited lines       gene editing  
Received: 03 February 2024   Online: 13 May 2024   Accepted: 02 April 2024
Fund: 
This research was supported by the National Key Research and Development Program of China (2022YFD1601502 and 2023YFD1200202), the National Natural Science Foundation of China (32272167 and 32341028), the Sichuan Science and Technology Program, China (2022ZDZX0015), and the Fundamental Research Funds for the Central Universities, China (SCU2019D013).
About author:  Ying Zhang, E-mail: zhangying2021@stu.scu.edu.cn; #Correspondence Rui Wang, E-mail: wangray1987@scu.edu.cn; Yun Zhao, E-mail: zhaoyun@scu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Ying Zhang, Rui Wang, Tianshun Luo, Jingyan Fu, Meng Yin, Maolin Wang, Yun Zhao. 2025. CRISPR-mediated editing of BnaNRAMP1 homologous copies creates a low Cd-accumulation oilseed rape germplasm with unaffected yield. Journal of Integrative Agriculture, 24(5): 1704-1717.

Aung M T, Song Y, Ferguson K K, Cantonwine D E, Zeng L, McElrath T F, Pennathur S, Meeker J D, Mukherjee B. 2020. Application of an analytical framework for multivariate mediation analysis of environmental data. Nature Communications11, 5624.

Bakshe P, Jugade R. 2023. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances10, 16.

Bernard A. 2016. Confusion about cadmium risks: The unrecognized limitations of an extrapolated paradigm. Environmental Health Perspectives124, 1–5.

Chen L L, Wan H P, Qian J L, Guo J B, Sun C M, Wen J, Yi B, Ma C Z, Tu J X, Song L Q, Fu T D, Shen J X. 2018. Genome-wide association study of cadmium accumulation at the seedling stage in rapeseed (Brassica napus L.). Frontiers in Plant Science9, 375.

Clough S J, Bent A F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thalianaPlant Journal16, 735–743.

Cojocaru P, Gusiatin Z M, Cretescu I. 2016. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus). Environmental Science and Pollution Research23, 10693–10701.

Daisley B A, Monachese M, Trinder M, Bisanz J E, Chmiel J A, Burton J P, Reid G. 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes10, 321–333.

Deng M, Malik A, Zhang Q, Sadeghpour A, Zhu Y W, Li Q R. 2021. Improving Cd risk managements of rice cropping system by integrating source–soil–rice–human chain for a typical intensive industrial and agricultural region. Journal of Cleaner Production313, 127883.

Grant C A, Clarke J M, Duguid S, Chaney R L. 2008. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment390, 301–310.

Haider F U, Cai L Q, Coulter J A, Cheema S A, Wu J, Zhang R Z, Ma W J, Farooq M. 2021a. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety211, 111887.

Haider F U, Coulter J A, Cheema S A, Farooq M, Jun W, Zhang R Z, Guo S J, Cai L Q. 2021b. Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety214, 112112.

Hussain B, Ashraf M N, Shafeeq R, Abbas A, Li J M, Farooq M. 2021a. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Science of the Total Environment754, 142188.

Hussain B, Umer M J, Li J M, Ma Y B, Abbas Y, Ashraf M N, Tahir N, Ullah A, Gogoi N, Farooq M. 2021b. Strategies for reducing cadmium accumulation in rice grains. Journal of Cleaner Production286, 125557.

Li D W, Ke Y, Meng F. 2013. Research progress on heavy metal pollution control and remediation. Research Journal of Chemistry & Environment17, 76–83.

Li J, Wang Y, Zheng L, Li Y, Zhou X, Li J, Gu D, Xu E, Lu Y, Chen X, Zhang W. 2019. The intracellular transporter AtNRAMP6 is involved in Fe homeostasis in ArabidopsisFrontiers in Plant Science10, 1124.

Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology31, 688–691.

Li P, Jiang H B, Barr A, Ren Z C, Gao R, Wang H, Fan W W, Zhu M F, Xu G Y, Li J. 2021. Reusable polyacrylonitrile-sulfur extractor of heavy metal ions from wastewater. Advanced Functional Materials31, 2170381.

Lohani N, Jain D, Singh M B, Bhalla P L. 2020. Engineering multiple abiotic stress tolerance in canola, Brassica napusFrontiers in Plant Science11, 3.

Mani A, Sankaranarayanan K. 2018. In silico analysis of natural resistance-associated macrophage protein (NRAMP) family of transporters in rice. The Protein Journal37, 237–247.

Meng J G, Zhang X D, Tan S K, Zhao K X, Yang Z M. 2017. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napusBiometals30, 917–931.

Nogué F, Mara K, Collonnier C, Casacuberta J M. 2016. Genome engineering and plant breeding: Impact on trait discovery and development. Plant Cell Reports35, 1475–1486.

Remelli M, Nurchi V M, Lachowicz J I, Medici S, Zoroddu M A, Peana M. 2016. Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coordination Chemistry Reviews327–328, 55–69.

Satarug S, Vesey D A, Gobe G C. 2017. Health risk assessment of dietary cadmium intake: Do current guidelines indicate how much is safe? Environmental Health Perspectives125, 284–288.

Shaaban M, Van Zwieten L, Bashir S, Younas A, Núñez-Delgado A, Chhajro M A, Kubar K A, Ali U, Rana M S, Mehmood M A, Hu R G. 2018. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management228, 429–440.

Shapiro R S, Chavez A, Porter C B M, Hamblin M, Kaas C S, DiCarlo J E, Zeng G, Xu X, Revtovich A V, Kirienko N V, Wang Y, Church G M, Collins J J. 2018. A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicansNature Microbiology3, 73–82.

Song J M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W Z, Cheng Y, Zhang Y, Liu K, Yang Q Y, Chen L L, Guo L. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napusNature Plants6, 34–45.

Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B. 2017. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Scientific Reports7, 14438.

Tang L L, Fu B M, Wu Y, Cai F C, Ma Y B. 2023. Linking atmospheric emission and deposition to accumulation of soil cadmium in the Middle-Lower Yangtze Plain, China. Journal of Integrative Agriculture22, 3170–3181.

Tang Z, Cai H, Li J, Lv Y, Zhang W, Zhao F J. 2017. Allelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in tobacco. Plant and Cell Physiology58, 1583–1593.

Ton L B, Neik T X, Batley J. 2020. The use of genetic and gene technologies in shaping modern rapeseed cultivars (Brassica napus L.). Genes (Basel), 11, 1161.

Tong X L, Han M J, Lu K P, Tai S S, Liang S B, Liu Y C, Hu H, Shen J H, Long A X, Zhan C Y, Ding X, Liu S, Gao Q, Zhang B, Zhou L L, Tan D, Yuan Y J, Guo N K, Li Y H, Wu Z Y, et al. 2022. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nature Communications13, 5619.

Wahid S, Xie M L, Sarfraz S, Liu J, Zhao C J, Bai Z T, Tong C B, Cheng X H, Gao F, Liu S Y. 2022. Genome-wide identification and analysis of ariadne gene family reveal its genetic effects on agronomic traits of Brassica napusInternational Journal of Molecular Sciences23, 6265.

Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y G, Zhao K. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922PLoS ONE11, e0154027.

Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C, Ma M, et al. 2019. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications10, 2562.

Yan S C, Wu H F, Zheng L, Tan M T, Jiang D. 2023. Cadmium (Cd) exposure through Hyphantria cunea pupae reduces the parasitic fitness of Chouioia cunea: A potential risk to its biocontrol efficiency. Journal of Integrative Agriculture22, 3103–3114.

Yang C H, Zhang Y, Huang C F. 2019. Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9-mediated editing of OsNRAMP5Journal of Integrative Agriculture18, 688–697.

Yang Q Q, Li Z Y, Lu X N, Duan Q N, Huang L, Bi J. 2018. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment642, 690–700.

Yao J Y, Bai J Y, Liu S, Fu J Y, Zhang Y, Luo T S, Ren H P, Wang R, Zhao Y. 2022. Editing of a novel Cd uptake-related gene CUP1 contributes to reducing Cd accumulations in Arabidopsis thaliana and Brassica napusCells11, 3888.

Ye Z, Liu Y. 2023. Polyphenolic compounds from rapeseeds (Brassica napus L.): The major types, biofunctional roles, bioavailability, and the influences of rapeseed oil processing technologies on the content. Food Research International163, 112282.

Zeng Q F, Zhao B J, Wang H, Wang M Q, Teng M X, Hu J J, Bao Z M, Wang Y F. 2022. Aquaculture Molecular Breeding Platform (AMBP): A comprehensive web server for genotype imputation and genetic analysis in aquaculture. Nucleic Acids Research50, W66–W74.

Zha Q, Xiao Z, Zhang X, Han Z, Wang Y. 2016. Cloning and functional analysis of MxNRAMP1 and MxNRAMP3, two genes related to high metal tolerance of Malus xiaojinensisSouth African Journal of Botany102, 75–80.

Zhao G, Cheng P F, Zhang T, Abdalmegeed D, Xu S, Shen W B. 2021. Hydrogen-rich water prepared by ammonia borane can enhance rapeseed (Brassica napu L.) seedlings tolerance against salinity, drought or cadmium. Ecotoxicology and Environmental Safety224, 11.

Zhao J Y, Lu H M, Qin S T, Pan P, Tang S D, Chen L H, Wang X L, Tang F Y, Tan Z L, Wen R H, He B. 2023. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice. Journal of Integrative Agriculture22, 2521–2535.

Zhao Z, Zhang H S, Fu Z J, Chen H, Lin Y, Yan P S, Li W H, Xie H L, Guo Z Y, Zhang X H, Tang J H. 2018. Genetic-based dissection of arsenic accumulation in maize using a genome-wide association analysis method. Plant Biotechnology Journal16, 1085–1093.

Zheng M, Zhang L, Tang M, Liu J L, Liu H F, Yang H L, Fan S H, Terzaghi W, Wang H Z, Hua W. 2020. Knockout of two BnaMAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnology Journal18, 644–654.

Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J S, Huang S, Liu S, Vera Cruz C, Frommer W B, White F F, Yang B. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant Biotechnology Journal82, 632–643.

Zhuang Z, Wang Q, Huang S, NiñoSavala A G, Wan Y, Li H, Schweiger A H, Fangmeier A, Franzaring J. 2023. Source-specific risk assessment for cadmium in wheat and maize: Towards an enrichment model for China. Journal of Environmental Sciences125, 723–734.

[1] Shuangping Heng, Mengdi Cui, Xiaolin Li, Shaoheng Zhang, Guangzhi Mao, Feng Xing, Zhengjie Wan, Jing Wen, Jinxiong Shen, Tingdong Fu.
The high quality genome of potherb mustard Xuecai (Brassica juncea var. multiceps) provides new insights into leaf shape variation
[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1461-1476.
[2] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[3] Qianwei Zhang, Yuanyi Mao, Zikun Zhao, Xin Hu, Ran Hu, Nengwen Yin, Xue Sun, Fujun Sun, Si Chen, Yuxiang Jiang, Liezhao Liu, Kun Lu, Jiana Li, Yu Pan.

A Golden2-like transcription factor, BnGLK1a, improves chloroplast development, photosynthesis, and seed weight in rapeseed [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1481-1493.

[4] Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu. Ovule number as a rising star for regulating seed yield: Hope or hype[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3623-3640.
[5] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[6] XUE Yu-fei, INKABANGA TSEKE Alain, YIN Neng-wen, JIANG Jia-yi, ZHAO Yan-ping, LU Kun, LI Jia-na, DING Yan-song, ZHANG Shi-qing, CHAI You-rong. Biotechnology of α-linolenic acid in oilseed rape (Brassica napus) using FAD2 and FAD3 from chia (Salvia hispanica)[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3810-3815.
[7] WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu. BnaSD.C3 is a novel major quantitative trait locus affecting semi-dwarf architecture in Brassica napus L.[J]. >Journal of Integrative Agriculture, 2023, 22(10): 2981-2992.
No Suggested Reading articles found!