Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 864-878    DOI: 10.1016/j.jia.2024.07.047
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat

Shuwei Zhang1*, Jiajia Zhao2*, Haiyan Zhang1, Duoduo Fu1, Ling Qiao2, Bangbang Wu2, Xiaohua Li2, Yuqiong Hao2, Xingwei Zheng2, Zhen Liang3, Zhijian Chang1#, Jun Zheng2#

1 College of Agriculture, Shanxi Agricultural University/Key Laboratory of Sustainable Dryland Agriculture (coconstruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taigu 030801, China

2 Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China

3 College of Life Sciences, Shanxi University, Taiyuan 030006, China

 Highlights 
Twelve structural chromosome variations were identified between Jinmai 47 and Jinmai 84, eight of which were significantly associated with key agronomic traits, including plant height, grain number per spike, and thousand-grain weight.
Present/absent variations (PAVs) on chromosomes 2A, 6A, 1D, 2D and a CNV on 4B, were associated with drought tolerance coefficients, indicating their potential roles in regulating drought response in wheat.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

结构变异是小麦遗传变异的重要基础,在小麦基因组进化中发挥着重要作用。关于结构变异对表型和抗旱性的效应报道较少。本研究利用荧光原位杂交技术鉴定了晋麦47、晋麦84及构建的DH群体和回交导入(BC5F3)的染色体结构变异(SCVs)结果表明:晋麦47和晋麦84间存在一个简单易位,10PAVs和一个CNV变异,分布在10条染色体上。其中8SCVs15个农艺性状相关联DH群体中发现2A染色体上存在PAVs重组类型,该类型显著影响穗粒数。1BL/1RS易位和PAV.2D分别通过降低LI2-LI4UI, LI2-LI4降低株高,1BL/1RS还显著增加小穗数粒长和粒厚,PAV.2D则显著增加穗粒数(3.13%)另外,PAV.4A.1GL, PAV.6A与SL和TGW,以及PAV.6B对SL, GT和TGW的效应也得到了验证。对于抗旱性方面,PAV.2A, PAV.6A, PAV.1D, PAV.2DCNV.4B与抗旱系数显著关联。各结构变异间存在加性和交互作用。值得注意的是,在PAV.2B, PAV.2D,和CNV.4B多态区域检测到与产量性状相关的基因和QTL位点。总之,本研究证实了SCV在小麦农艺性状形成和抗旱性方面的遗传效应,鉴定的SCV将为小麦进行分子标记辅助遗传改良提供依据。



Abstract  
Structural variation is an important source of genetic variation in wheat and have been important in the evolution of the wheat’s genome.  Few studies have examined the relationship between structural variations and agronomy and drought tolerance.  The present study identified structural chromosome variations (SCVs) in a doubled haploid (DH) population and backcross introgression lines (BC5F3) derived from Jinmai 47 and Jinmai 84 using fluorescence in situ hybridization (FISH).  There are one simple translocation, 10 present/absent variations (PAVs), and one copy number variation (CNV) between Jinmai 47 and Jinmai 84, which distributed in 10 chromosomes.  Eight SCVs were associated with 15 agronomic traits.  A PAV recombination occurred on chromosome 2A, which was associated with grain number per spike (GNS).  The 1BL/1RS translocation and PAV.2D were associated with significant reductions in plant height, deriving from the effects on LI2-LI4,  LI2-LI4 and UI, respectively respectively.  PAV.2D was also contributed to an increase of 3.13% for GNS, 1BL/1RS significantly increased spikelet number, grain length (GL), and grain thickness (GT).  The effect of PAV.4A.1 on GL, PAV.6A on spike length (SL) and thousand-grain weight (TGW), PAV.6B on SL, GT and TGW were identified and verified.  PAVs on chromosomes 2A, 6A, 1D, 2D, and a CNV on chromosome 4B were associated with the drought tolerance coefficients.  Additive and interaction effects among SCVs were observed.  Many previously cloned key genes and yield-related QTL were found in polymorphic regions of PAV.2B, PAV.2D, and CNV.4B.  Altogether, this study confirmed the genetic effect of SCVs on agronomy and drought tolerance, and identification of these SCVs will facilitate genetic improvement of wheat through marker-assisted selection.


Keywords:  wheat       structural chromosome variation        agronomy       drought tolerance       effect  
Received: 29 February 2024   Accepted: 21 June 2024 Online: 01 August 2024  
Fund: This project was supported by the Science and Technology Major Project of Shanxi Province, China (202201140601025-2, 202302140601001), the Agricultural Science Research Project of Shanxi Agricultural University, China (2023BQ108), the Senior Foreign Experts Introducing Project, China (G202204011L), and the Science and Technology Innovation Young Talent Team of Shanxi Province, China (202204051001019).
About author:  Shuwei Zhang, E-mail: zshuwei@sxau.edu.cn; Jiajia Zhao, E-mail: jjzh1990@163.com; #Correspondence Zhijian Chang, E-mail: wrczj@126.com; Jun Zheng, Mobile: +86-18835712419, E-mail: sxnkyzj@126.com * These authors contributed equally to this study.

Cite this article: 

Shuwei Zhang, Jiajia Zhao, Haiyan Zhang, Duoduo Fu, Ling Qiao, Bangbang Wu, Xiaohua Li, Yuqiong Hao, Xingwei Zheng, Zhen Liang, Zhijian Chang, Jun Zheng. 2026. Structural chromosome variations from Jinmai 47 and Jinmai 84 affected agronomic traits and drought tolerance of wheat. Journal of Integrative Agriculture, 25(3): 864-878.

Allen B, Pezone A, Porcellini A, Muller M T, Masternak M M. 2017. Non-homologous end joining induced alterations in DNA methylation: A source of permanent epigenetic change. Oncotarget8, 40359–40372.

Alonge M, Wang X G, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel T H, Shalev-Schlosser G, Amsellem Z, Razifard H, Caicedo A L, Tieman D M, Klee H, Kirsche M, Aganezov S, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell182, 145–161.

Arora H, Singh R K, Sharma S, Sharma N, Panchal A, Das T, Prasad A, Prasad M. 2022. DNA methylation dynamics in response to abiotic and pathogen stress in plants. Plant Cell Reports41, 1931–1944.

Baidyussen A, Khassanova G, Utebayev M, Jatayev S, Kushanova R, Khalbayeva S, Amangeldiyeva A, Yerzhebayeva R, Bulatova K, Schramm C, Anderson P, Jenkins C L D, Soole K, Shavrukov Y. 2024. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.). Journal of Integrative Agriculture23, 20–38.

Boehm Jr J D, Zhang M Y, Cai X W, Morris C F. 2017. Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat. Plant Genome10, 1–11.

Catacchio C R, Alagna F, Perniola R, Bergamini C, Rotunno S, Calabrese F M, Crupi P, Antonacci D, Ventura M, Cardone M F. 2019. Transcriptomic and genomic structural variation analyses on grape cultivars reveal new insights into the genotype-dependent responses to water stress. Scientific Reports9, 2809.

Chen J Y, Tang Y Q, Yao L S, Wu H, Tu X Y, Zhuang L F, Qi Z J. 2019. Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and structural rearrangements introgressed in wheat. Molecular Breeding39, 146.

Crow T, Ta J, Nojoomi S, Aguilar-Rangel M R, Torres Rodríguez J V, Gates D, Rellán-Álvarez R, Sawers R, Runcie D. 2020. Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS Genetics16, e1009213.

Cui F, Zhao C H, Ding A M, Li J, Wang L, Li X F, Bao Y G, Li J M, Wang H G. 2014. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theoretical and Applied Genetics127, 659–675.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R, 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics27, 2156–2158.

Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A. 2012. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE7, e33234.

Fransz P, Linc G, Lee C R, Aflitos S A, Lasky J R, Toomajian C, Ali H, Peters J, van Dam P, Ji X W, Kuzak M, Gerats T, Schubert I, Schneeberger K, Colot V, Martienssen R, Koornneef M, Nordborg M, Juenger T E, de Jong H, et al. 2016. Molecular, genetic and evolutionary analysis of a paracentric inversion in Arabidopsis thalianaThe Plant Journal88, 159–178.

Gabay G, Wang H C, Zhang J L, Moriconi J I, Burguener G F, Gualano L D, Howell T, Lukaszewski A, Staskawicz B, Cho M J, Tanaka J, Fahima T, Ke H Y, Dehesh K, Zhang G L, Gou J Y, Hamberg M, Santa-María G E, Dubcovsky J. 2023. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nature Communications14, 539.

Gabur I, Chawla H S, Lopisso D T, von Tiedemann A, Snowdon R J, Obermeier C. 2020. Gene presence-absence variation associates with quantitative Verticillium longisporum disease resistance in Brassica napusScientific Reports10, 4131.

Gabur I, Chawla H S, Snowdon R J, Parkin I A P. 2019. Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics132, 733–750.

Guo J, Guo J H, Li L, Bai X H, Huo X Y, Shi W P, Gao L F, Dai K L, Jing R L, Hao C Y. 2023. Combined linkage analysis and association mapping identifies genomic regions associated with yield-related and drought-tolerance traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics136, 250.

Gupta P K, Balyan H S, Sharma S, Kumar R. 2020. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics133, 1569–1602.

Han G H, Liu S Y, Wang J, Jin Y L, Zhou Y L, Luo Q L, Liu H, Zhao H, An D G. 2020. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Disease104, 2940–2948.

He W C, He H Y, Yuan Q L, Zhang H, Li X X, Wang T Y, Yang Y X, Yang L B, Yang Y T, Liu X P, Wei H, Zhang H, Zhang B, Guo M L, Leng Y, Shi C L, Lv Y, Chen W, Wang X M, Zhang Z P, et al. 2024. Widespread inversions shape the genetic and phenotypic diversity in rice. Science Bulletin69, 593–596.

Hickey L T, Hafeez A N, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C X, Godwin I D, Hayes B J, Wulff B B H. 2019. Breeding crops to feed 10 billion. Nature Biotechnology37, 744–754.

Howell T, Hale I, Jankuloski L, Bonafede M, Gilbert M, Dubcovsky J. 2014. Mapping a region within the 1RS·1BL translocation in common wheat affecting grain yield and canopy water status. Theoretical and Applied Genetics, 127, 2695–2709.

Hsam S L K, Zeller F J. 2006. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breeding116, 119–122.

Hu Z L, Luo J T, Wan L R, Luo J, Li Y Z, Fu S L, Liu D C, Hao M, Tang Z X. 2022. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND-FISH landmarks. Cereal Research Communications50, 253–262.

Huang X Y, Zhu M Q, Zhuang L F, Zhang S Y, Wang J J, Chen X J, Wang D R, Chen J Y, Bao Y G, Guo J, Zhang J L, Feng Y G, Chu C G, Du P, Qi Z J, Wang H G, Chen P D. 2018. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics131, 1967–1986.

Huang Y M, Huang W, Meng Z, Braz G T, Li Y F, Wang K, Wang H, Lai J S, Jiang J M, Dong Z B, Jin W W. 2021. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology22, 237.

Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Ou S J, Liu J N, Ricci W A, Guo T T, Olson A, Qiu Y J, Della Coletta R, Tittes S, Hudson A I, Marand A P, Wei S, Lu Z Y, Wang B, Tello-Ruiz M K, Piri R D, Wang N, et al. 2021. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science373, 655–662.

Jin K, Wang S F, Zhang Y Z, Xia M F, Mo Y Z, Li X L, Li G Y, Zeng Z Y, Xiong W, He Y. 2019. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cellular And Molecular Life Sciences76, 4275–4289.

Jin S K, Han Z G, Hu Y, Si Z F, Dai F, He L, Cheng Y, Li Y Q, Zhao T, Fang L, Zhang T Z. 2023. Structural variation (SV)-based pan-genome and GWAS reveal the impacts of SVs on the speciation and diversification of allotetraploid cottons. Molecular Plant16, 678–693.

Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. 2019. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 249, 663–675.

Li A L, Hao C Y, Wang Z Y, Geng S F, Jia M L, Wang F, Han X, Kong X C, Yin L J, Tao S, Deng Z Y, Liao R Y, Sun G L, Wang K, Ye X G, Jiao C Z, Lu H F, Zhou Y, Liu D C, Fu X D, et al. 2022. Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant15, 504–519.

Li K, Debernardi J M, Li C, Lin H, Zhang C, Jernstedt J, Korff M V, Zhong J, Dubcovsky J. 2021. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. The Plant Cell33, 3621–3644.

Li X R, Guo T T, Wang J Y, Bekele W A, Sukumaran S, Vanous A E, McNellie J P, Tibbs-Cortes L E, Lopes M S, Lamkey K R, Westgate M E, McKay J K, Archontoulis S V, Reynolds M P, Tinker N A, Schnable P S, Yu J M. 2021. An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant14, 874–887.

Li Y Y, Xiao J H, Wu J J, Duan J L, Liu Y, Ye X G, Zhang X, Guo X P, Gu Y Q, Zhang L C, Jia J Z, Kong X Y. 2012. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytologist196, 282–291.

Liu J, Wu B H, Singh R P, Velu G. 2019. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population. Journal of Cereal Science88, 57–64.

Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z J, Tao Y S, Zheng Y L, Yan J B, Zhang Z X. 2015. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics11, e1005670.

Liu L H, Qu P P, Zhou Y, Li H B, Liu Y N, Zhang M M, Zhang L P, Zhao C P, Zhang S Q, Pang B S. 2024. Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using the BAAFS Wheat 90K SNP array. Journal of Integrative Agriculture23, 3641–3656.

Liu Y, Yu T F, Li Y T, Zheng L, Lu Z W, Zhou Y B, Chen J, Chen M, Zhang J P, Sun G Z, Cao X Y, Liu Y W, Ma Y Z, Xu Z S. 2022. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat. New Phytologist236, 114–131.

Liu Y C, Du H L, Li P C, Shen Y T, Peng H, Liu S L, Zhou G A, Zhang H K, Liu Z, Shi M, Huang X H, Li Y, Zhang M, Wang Z, Zhu B G, Han B, Liang C Z, Tian Z X. 2020. Pan-genome of wild and cultivated soybeans. Cell182, 162–176.e13.

Lv R L, Gou X W, Li N, Zhang Z B, Wang C Y, Wang R S, Wang B, Yang C W, Gong L, Zhang H K, Liu B. 2023. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. The Plant Journal115, 1564–1582.

Ma X, Wang Q, Wang Y, Ma J, Wu N, Ni S, Luo T, Zhuang L, Chu C, Cho S W, Tsujimoto H, Qi Z. 2016. Chromosome aberrations induced by zebularine in triticaleGenome59, 485–492.

Mago R, Miah H, Lawrence G J, Wellings C R, Spielmeyer W, Bariana H S, McIntosh R A, Pryor A J, Ellis J G. 2005. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics112, 41–50.

Mahmoud M, Gobet N, Cruz-Dávalos D I, Mounier N, Dessimoz C, Sedlazeck F J. 2019. Structural variant calling: The long and the short of it. Genome Biology20, 246.

Mahmoud M, Gracz-Bernaciak J, Żywicki M, Karłowski W, Twardowski T, Tyczewska A. 2020. Identification of structural variants in two novel genomes of maize inbred lines possibly related to glyphosate tolerance. Plants9, 523.

Mao H D, Li S M, Chen B, Jian C, Mei F M, Zhang Y F, Li F F, Chen N, Li T, Du L Y, Ding L, Wang Z X, Cheng X X, Wang X J, Kang Z S. 2022. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant15, 276–292.

McCouch S R, Chen X L, Panaud O, Temnykh S, Xu Y B, Cho Y G, Huang N, Ishii T, Blair M. 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology35, 89–99.

Metz C W, Bridges C B. 1917. Incompatibility of mutant races in drosophila. Proceedings of the National Academy of Sciences of the United States of America3, 673–678.

Molitor C, Kurowski T J, Fidalgo de Almeida P M, Eerolla P, Spindlow D J, Kashyap S P, Singh B, Prasanna H C, Thompson A J, Mohareb F R. 2021. De novo genome assembly of Solanum sitiens reveals structural variation associated with drought and salinity tolerance. Bioinformatics37, 1941–1945.

Montenegro J D, Golicz A A, Bayer P E, Hurgobin B, Lee H, Chan C K K, Visendi P, Lai K T, Doležel, J, Batley J, Edwards D. 2017. The pangenome of hexaploid bread wheat. The Plant Journal90, 1007–1013.

Muqaddasi Q H, Brassac J, Koppolu R, Plieske J, Ganal M W, Röder M S. 2019. TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Scientific Reports9, 13853.

Niebuhr E. 1978. Cytologic observations in 35 individuals with a 5p– karyotype. Human Genetic42, 143–156.

Osipova S, Permyakov A, Permyakova M, Rudikovskaya E, Pomortsev A, Verkhoturov V, Pshenichnikova T. 2020. Drought tolerance evaluation of bread wheat (Triticum aestivum L.) lines with the substitution of the second homoeological group chromosomes. Cereal Research Communications48, 267–273.

Qin P, Lu H W, Du H L, Wang H, Chen W L, Chen Z, He Q, Ou S J, Zhang H Y, Li X Z, Li X X, Li Y, Liao Y, Gao Q, Tu B, Yuan H, Ma B T, Wang Y P, Qian Y W, Fan S J, et al. 2021. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell184, 3542–3558.

Quigley D A, Dang H X, Zhao S G, Lloyd P, Aggarwal R, Alumkal J J, Foye A, Kothari V, Perry M D, Bailey A M, Playdle D, Barnard T J, Zhang L, Zhang J, Youngren J F, Cieslik M P, Parolia A, Beer T M, Thomas G, Chi K N, et al. 2018. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell174, 758–769.

Sakuma S, Golan G, Guo Z F, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T. 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America116, 5182–5187.

Schiessl S V, Katche E, Ihien E, Chawla H S, Mason A S. 2019. The role of genomic structural variation in the genetic improvement of polyploid crops. The Crop Journal7, 127–140.

Shi W P, Hao C Y, Zhang Y, Cheng J Y, Zhang Z, Liu J, Yi X, Cheng X M, Sun D Z, Xu Y H, Zhang X Y, Cheng S H, Guo P Y, Guo J. 2017. A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Frontiers in Plant Science8, 1412.

Shokat S, Sehgal D, Vikram P, Liu F L, Singh S. 2020. Molecular markers associated with agro-physiological traits under terminal drought conditions in bread wheat. International Journal of Molecular Sciences21, 3156.

Šimoníková D, Němečková A, Čížková J, Brown A, Swennen R, Doležel J, Hřibová E. 2020. Chromosome painting in cultivated bananas and their wild relatives (Musa spp.) reveals differences in chromosome structure. International Journal of Molecular Sciences21, 7915.

Song L, Liu J, Cao B L, Liu B, Zhang X P, Chen Z Y, Dong C Q, Liu X Q, Zhang Z H, Wang W X, Chai L L, Liu J, Zhu J, Cui S B, He F, Peng H R, Hu Z R, Su Z Q, Guo W L, Xin M M, et al. 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature617, 118–124.

Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. 2011. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics122, 211–223.

Sutton T, Baumann U, Hayes J, Collins N C, Shi B J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P. 2007. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science318, 1446–1449.

Thind A K, Wicker T, Müller T, Ackermann P M, Steuernagel B, Wulff B B H, Spannagl M, Twardziok S O, Felder M, Lux T, Mayer K F X, IWGSC (International Wheat Genome Sequencing Consortium), Keller B, Krattinger S G. 2018. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology19, 104.

Trickett A J, Butlin R K. 1994. Recombination suppressors and the evolution of new species. Heredity73, 339–345.

Villareal R L, del Toro E, Mujeeb-Kazi A, Rajaram S. 1995. The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding114, 497–500.

Walkowiak S, Gao L L, Monat C, Haberer G, Kassa M T, Brinton J, Ramirez-Gonzalez R H, Kolodziej M C, Delorean E, Thambugala D, Klymiuk V, Byrns B, Gundlach H, Bandi V, Siri J N, Nilsen K, Aquino C, Himmelbach A, Copetti D, Ban T, et al. 2020. Multiple wheat genomes reveal global variation in modern breeding. Nature588, 277–283.

Wang M M, Geng J, Zhang Z, Zhang Z H, Miao L F, Ma T, Xing J W, Li B Y, Sun Q X, Zhang Y F, Ni Z F. 2024. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat. Journal of Integrative Agriculture23, 2911–2922.

Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T. 2014. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proceedings of the National Academy of Sciences of the United States of America111, 533–538.

Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. 2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics47, 944–948.

Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, De Oliveira R, IWGSC (International Wheat Genome Sequencing Consortium), Mayer K F X, Paux E, Choulet F. 2018. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology19, 103.

Wu L, Li G, Li D, Dong C, Zhang X, Zhang L, Yang Z, Kong X, Xia C, Chen J, Liu X. 2024. Identification and functional analysis of a chromosome 2D fragment harboring TaFPF1 gene with the potential for yield improvement using a late heading wheat mutant. Theoretical and Applied Genetics137, 92.

Würschum T, Boeven P H G, Langer S M, Longin C F H, Leiser W L. 2015. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genetics16, 96.

Xia X T, Zhang F W, Li S, Luo X Y, Peng L X, Dong Z, Pausch H, Leonard A S, Crysnanto D, Wang S, Tong B, Lenstra J A, Han J L, Li F Y, Xu T S, Gu L H, Jin L L, Dang R H, Huang Y Z, Lan X Y, et al. 2023. Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment. Genome Biology24, 211.

Yang B, Chen N, Dang Y F, Wang Y Z, Wen H W, Zheng J, Zheng X W, Zhao J J, Lu J X, Qiao L. 2022. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. Frontiers in Plant Science13, 1019012.

Yang J, Zhou Y J, Wu Q H, Chen Y X, Zhang P P, Zhang Y E, Hu W G, Wang X C, Zhao H, Dong L L, Han J, Liu Z Y, Cao T J. 2019. Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics132, 1799–1814.

Yuan Y X, Bayer P E, Batley J, Edwards D. 2021. Current status of structural variation studies in plants. Plant Biotechnology Journal19, 2153–2163.

Zhang X, Chen X, Liang P, Tang H. 2018. Cataloging plant genome structural variations. Current Issues in Molecular Biology27, 181–194.

Zhang X Y, Jia H Y, Li T, Wu J Z, Nagarajan R, Lei L, Powers C, Kan C C, Hua W, Liu Z Y, Chen C, Carver B F, Yan L L. 2022. TaCol-B5 modifies spike architecture and enhances grain yield in wheat. Science376, 180–183.

Zhang Y, Li D, Zhang D B, Zhao X G, Cao X M, Dong L L, Liu J X, Chen K L, Zhang H W, Gao C X, Wang D W. 2018. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal94, 857–866.

Zhao J J, Li X H, Qiao L, Zheng X W, Wu B B, Guo M J, Feng M C, Qi Z J, Yang W D, Zheng J. 2023. Identification of structural variations related to drought tolerance in wheat (Triticum aestivum L.). Theoretical and Applied Genetics136, 37.

Zhao J J, Zheng X W, Qiao L, Yang C K, Wu B B, He Z M, Tang Y Q, Li G R, Yang Z J, Zheng J, Qi Z J. 2022. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). The Plant Journal112, 1447–1461.

Zhu X L, Rong W, Wang K, Guo W, Zhou M P, Wu J Z, Ye X G, Wei X N, Zhang Z Y. 2022. Overexpression of TaSTT3b-2B improves resistance to sharp eyespot and increases grain weight in wheat. Plant Biotechnology Journal20,777–793.

Zhuang M J, Li C N, Wang J Y, Mao X G, Li L, Yin J, Du Y, Wang X, Jing R L. 2021.The wheat SHORT ROOT LENGTH 1 gene TaSRL1 controls root length in an auxin-dependent pathway. Journal of Experimental Botany72, 6977–6989.

Zou Y, Wan L R, Luo J, Tang Z X, Fu S L. 2021. FISH landmarks reflecting meiotic recombination and structural alterations of chromosomes in wheat (Triticum aestivum L.). BMC Plant Biology21,167.

[1] Jie Shuai, Qiang Tu, Yicong Zhang, Xiaobo Xia, Yuhua Wang, Shulin Cao, Yifan Dong, Xinli Zhou, Xu Zhang, Zhengguang Zhang, Yi He, Gang Li. Silence of five Fusarium graminearum genes in wheat host confers resistance to Fusarium head blight[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1051-1063.
[2] Jili Xu, Shuo Liu, Zhiyuan Gao, Qingdong Zeng, Xiaowen Zhang, Dejun Han, Hui Tian. Genome-wide association study reveals genomic regions for nitrogen, phosphorus and potassium use efficiency in bread wheat[J]. >Journal of Integrative Agriculture, 2026, 25(3): 847-863.
[3] Yuhuai Liu, Heng Wang, Li Wang, Jina Ding, Hui Zhai, Qiujin Ma, Can Hu, Tida Ge. Microplastics reduce the wheat (Triticum aestivum L.) net photosynthetic rate through rhizospheric effects[J]. >Journal of Integrative Agriculture, 2026, 25(3): 1263-1275.
[4] Lin Wang, Fei Liu, Yumeng Bian, Mudi Sun, Zhensheng Kang, Jie Zhao. Revealing inheritance of a Xinjiang isolate BGTB-1 of Puccinia striiformis f. sp. tritici and the shift of pathogenicity from avirulence to virulence at heterozygous AvrYr5 locus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 744-755.
[5] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[6] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[7] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[8] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[9] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[10] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[11] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[12] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[13] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[14] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[15] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
No Suggested Reading articles found!