Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Immunogenicity and efficacy of an LNP-mRNA prepared from African Swine Fever Virus K205R
Chuanwen Tian1*, Yingnan Liu1*, Dongdong Di2, Zhenhua Xie1, Yao Li1, Rongrong Wang1, Jie Li2, Jingyi Liu1#, Hongjun Chen1#

1Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2The Spirit Jinyu Biological Pharmaceutical Co. Ltd., Hohhot 010030, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  非洲猪瘟(Afrecian Swine Fever, ASF)是由非洲猪瘟病毒(Afrecian Swine Fever Virus, ASFV)感染引起的致死性疾病,感染ASFV的猪通常出现急性病症,表现为高热、食欲丧失、呼吸系统和神经系统功能紊乱,内脏器官广泛出血等症状,且病程短、死亡率极高。尽管ASFV一些重要蛋白的结构已经解析,但目前仍然无有效防控ASF的疫苗。ASFV K205R 基因位于病毒基因组右侧,被证实具有高抗原性,可以用于检测ASFV特异性抗体。同时,重组K205R的腺病毒载体疫苗免疫猪后能够产生极强的体液免疫水平,表明K205R具有良好的免疫原性。mRNA疫苗作为新兴的疫苗平台,具有广阔的应用价值。mRNA疫苗可以同时激活体液免疫和细胞免疫,形成双重免疫保护机制,较传统疫苗的保护作用更强。为了探究ASFV K205R mRNA的免疫原性,本研究经体外转录反应合成了K205R mRNA,并将mRNALNP混合,获得LNP包裹的K205R mRNA。经检测K205R mRNA-LNP的粒径大小约为86.27纳米,其封装效率为96.24%。体外转染证明其在293TPK15细胞中能够正常表达。随后通过ELISA在小鼠和猪体内评价了K205R mRNA-LNP的免疫原性,与对照组相比,二次免疫后7天均产生了高水平的抗体,抗体效价可以达到1512000。接下来,为了探究ASFV K205R mRNA的保护效果,我们进行了非洲猪瘟病毒攻毒实验。在第二次接种K205R mRNA后的第三周,使用5.0 HAD50 ASFV-GZ株进行攻毒。对照组所有猪只在9天内全部死亡。而免疫组中,接种K205R mRNA的猪只死亡时间有所延迟,其中2头猪在第10天死亡,另外1头猪在第18天死亡。这表明K205R mRNAASFV有猪一定的保护作用,能够延长猪的存活时间。本研究首次评价了ASFV K205R mRNA的免疫原性,并在猪体内评估了其保护作用,为后续ASFV疫苗的研发提供参考。

Online: 16 April 2024  
Fund: This research was funded by the National Key Research and Development Program of China (2021YFD1801401, 2023YFD1802600, and 2022YFD1800500), the Central Public-interest Scientific Institution Basal Research Fund (Y2022PT11), and the Shanghai Sailing Program (23YF1457400).
About author:  #Correspondence Hongjun Chen, E-mail: vetchj@shvri.ac.cn; Jingyi Liu, E-mail: liujingyi@shvri.ac.cn * These authors contributed equally to this study

Cite this article: 

Chuanwen Tian, Yingnan Liu, Dongdong Di, Zhenhua Xie, Yao Li, Rongrong Wang, Jie Li, Jingyi Liu, Hongjun Chen. 2024. Immunogenicity and efficacy of an LNP-mRNA prepared from African Swine Fever Virus K205R. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.03.053

Afe A E, Shen Z J, Guo X, Zhou R, Li K. 2023. African swine fever virus interaction with host innate immune factors. Viruses, 15(6):1220.

Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano J M, Ictv Report C. 2018. ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology, 99(5):613-614.

Anderson E J, Rouphael N G, Widge A T, Jackson L A, Roberts P C, Makhene M, Chappell J D, Denison M R, Stevens L J, Pruijssers A J, McDermott A B, Flach B, Lin B C, Doria-Rose N A, O'Dell S, Schmidt S D, Corbett K S, Swanson P A, 2nd, Padilla M, Neuzil K M, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara V V, Floyd K, Suthar M S, Martinez D R, Baric R, Buchanan W, Luke C J, Phadke V K, Rostad C A, Ledgerwood J E, Graham B S, Beigel J H, m R N A S G. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. New England Journal of Medicine, 383(25): 2427-2438.

Blome S, Gabriel C, Beer M. 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 32(31):3879-3882.

Chen T, Zhu S, Wei N, Zhao Z, Niu J, Si Y, Cao S, Ye J. 2022. Protective immune responses induced by an mRNA-LNP vaccine encoding prM-E proteins against Japanese Encephalitis virus Infection. Viruses, 14(6):1121.

Deutschmann P, Forth J H, Sehl-Ewert J, Carrau T, Viaplana E, Mancera J C, Urniza A, Beer M, Blome S. 2023. Assessment of African swine fever vaccine candidate ASFV-G-∆MGF in a reversion to virulence study. NPJ Vaccines, 8(1):78.

Dixon L K, Islam M, Nash R, Reis A L. 2019. African swine fever virus evasion of host defences. Virus Research, 266:25-33.

Galindo I, Alonso C. 2017. African swine fever virus: a review. Viruses, 9(5):103.

Hua R H, Liu J, Zhang S J, Liu R Q, Zhang X F, He X J, Zhao D M, Bu Z G. 2023. Mammalian cell-line-expressed CD2v protein of African swine fever virus provides partial protection against the HLJ/18 strain in the early infection stage. Viruses, 15(7):1467.

Jiang Z, Zhu L, Cai Y, Yan J, Fan Y, Lv W, Gong S, Yin X, Yang X, Sun X, Xu Z. 2020. Immunogenicity and protective efficacy induced by an mRNA vaccine encoding gD antigen against pseudorabies virus infection. Veterinary Microbiology, 251:108886.

Kollnberger S D, Gutierrez-Castaneda B, Foster-Cuevas M, Corteyn A, Parkhouse R M E. 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. Journal of Genernal Virology, 83(Pt 6):1331-1342.

Kowalczyk A, Doener F, Zanzinger K, Noth J, Baumhof P, Fotin-Mleczek M, Heidenreich R. 2016. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine, 34(33):3882-3893.

Lokhandwala S, Waghela S D, Bray J, Sangewar N, Charendoff C, Martin C L, Hassan W S, Koynarski T, Gabbert L, Burrage T G, Brake D, Neilan J, Mwangi W. 2017. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS One, 12(5):e0177007.

Lopez E, van Heerden J, Bosch-Camos L, Accensi F, Navas M J, Lopez-Monteagudo P, Argilaguet J, Gallardo C, Pina-Pedrero S, Salas M L, Salt J, Rodriguez F. 2020. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses, 12(12):1474.

Lv C, Yang J, Zhao L, Wu C, Kang C, Zhang Q, Sun X, Chen X, Zou Z, Jin M. 2022. Infection characteristics and transcriptomics of African swine fever virus in bama minipigs. Microbiology Spectrum, 10(6):e0383422.

Miao L, Zhang Y, Huang L. 2021. mRNA vaccine for cancer immunotherapy. Molecular Cancer, 20(1), 41.

Mulligan M J, Lyke K E, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson K A, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi P Y, Tureci O, Tompkins K R, Walsh E E, Frenck R, Falsey A R, Dormitzer P R, Gruber W C, Sahin U, Jansen K U. 2021. Publisher Correction: Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 590(7844):E26.

Reis A L, Parkhouse R M E, Penedos A R, Martins C, Leitao A. 2007. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. Journal of General Virology, 88(Pt 9):2426-2434.

Schnee M, Vogel A B, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. 2016. An mRNA vaccine encoding Rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Neglected Tropical Diseases, 10(6):e0004746.

Tran X H, Phuong L T T, Huy N Q, Thuy D T, Nguyen V D, Quang P H, Ngon Q V, Rai A, Gay C G, Gladue D P, Borca M V. 2022. Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-ΔI177L. Viruses, 14(5):896.

Veiga N, Goldsmith M, Granot Y, Rosenblum D, Dammes N, Kedmi R, Ramishetti S, Peer D. 2018. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nature Communications, 9(1):4493.

Wang Q, Zhou L, Wang J, Su D, Li D, Du Y, Yang G, Zhang G, Chu B. 2022. African swine fever virus K205R induces ER stress and consequently activates autophagy and the NF-kappaB signaling pathway. Viruses, 14(2):394.

Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. 2021. mRNA vaccine: a potential therapeutic strategy. Molecular Cancer, 20(1):33.

Wu X, Xiao L, Peng B, Wang Y, Yang Z, Yao X, Hu L, Lin X. 2016. Prokaryotic expression, purification and antigenicity analysis of African swine fever virus pK205R protein. Polish Journal of Veterinary Sciences, 19(1):41-48.

Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu H J, Hu R. 2018. Emergence of African Swine Fever in China, 2018. Transboundary and Emerging Diseases, 65(6):1482-1484. 

No related articles found!
No Suggested Reading articles found!