Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 4026-4033    DOI: 10.1016/j.jia.2024.03.053
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Immunogenicity and efficacy of an LNP-mRNA prepared from African swine fever virus K205R

Chuanwen Tian1*, Yingnan Liu1*, Dongdong Di2, Zhenhua Xie1, Yao Li1, Rongrong Wang1, Jie Li2, Jingyi Liu1#, Hongjun Chen1#

1 Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China

2 Spirit Jinyu Biological Pharmaceutical Co., Ltd., Hohhot 010030, China

 Highlights 
This study provides that an mRNA vaccine targeting the K205R antigen can induce antibody production in both mice and pigs.  
Pigs vaccinated with the K205R mRNA showed a significantly delayed time to death following challenge with African swine fever virus (ASFV).
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  非洲猪瘟(Afrecian Swine Fever, ASF)是由非洲猪瘟病毒(Afrecian Swine Fever Virus, ASFV)感染引起的致死性疾病,感染ASFV的猪通常出现急性病症,表现为高热、食欲丧失、呼吸系统和神经系统功能紊乱,内脏器官广泛出血等症状,且病程短、死亡率极高。尽管ASFV一些重要蛋白的结构已经解析,但目前仍然无有效防控ASF的疫苗。ASFV K205R 基因位于病毒基因组右侧,被证实具有高抗原性,可以用于检测ASFV特异性抗体。同时,重组K205R的腺病毒载体疫苗免疫猪后能够产生极强的体液免疫水平,表明K205R具有良好的免疫原性。mRNA疫苗作为新兴的疫苗平台,具有广阔的应用价值。mRNA疫苗可以同时激活体液免疫和细胞免疫,形成双重免疫保护机制,较传统疫苗的保护作用更强。为了探究ASFV K205R mRNA的免疫原性,本研究经体外转录反应合成了K205R mRNA,并将mRNALNP混合,获得LNP包裹的K205R mRNA。经检测K205R mRNA-LNP的粒径大小约为86.27纳米,其封装效率为96.24%。体外转染证明其在293TPK15细胞中能够正常表达。随后通过ELISA在小鼠和猪体内评价了K205R mRNA-LNP的免疫原性,与对照组相比,二次免疫后7天均产生了高水平的抗体,抗体效价可以达到1512000。接下来,为了探究ASFV K205R mRNA的保护效果,我们进行了非洲猪瘟病毒攻毒实验。在第二次接种K205R mRNA后的第三周,使用5.0 HAD50 ASFV-GZ株进行攻毒。对照组所有猪只在9天内全部死亡。而免疫组中,接种K205R mRNA的猪只死亡时间有所延迟,其中2头猪在第10天死亡,另外1头猪在第18天死亡。这表明K205R mRNAASFV有猪一定的保护作用,能够延长猪的存活时间。本研究首次评价了ASFV K205R mRNA的免疫原性,并在猪体内评估了其保护作用,为后续ASFV疫苗的研发提供参考。

Abstract  
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious swine disease that has spread globally.  Effective control strategies are not yet available.  In this study, we prepared K205R mRNA, which was then formulated using Lipid Nanoparticle (LNP).  The resulting K205R mRNA-LNP showed a particle size of approximately 86.27 nm and an mRNA encapsulation efficiency of 96.24%.  Efficient expression of the K205R protein was confirmed in both HEK293T and PK15 cells.  We further evaluated the immunogenicity of K205R mRNA-LNP in mice and pigs.  All immunized animals developed significantly higher levels of IgG antibodies against K205R compared to the control group in the first week after the second immunization, with antibody titers reaching up to 105.  Challenge experiments showed that K205R mRNA delayed the time of death.  Our results suggested the successful implementation of the mRNA platform in the preparation and application of ASFV mRNA.


Keywords:  ASFV       K205R       mRNA       immunogenicity  
Received: 15 November 2023   Online: 16 March 2024   Accepted: 07 February 2024
Fund: This research was funded by the National Key Research and Development Program of China (2022YFD1800500, 2021YFD1801401, and 2023YFD1802600), the Central Public-interest Scientific Institution Basal Research Fund, China (Y2022PT11), and the Shanghai Sailing Program, China (23YF1457400).
About author:  Chuanwen Tian, E-mail: 2294875470@qq.com; Yingnan Liu, E-mail: liuyingnan@cau.edu.cn; #Correspondence Hongjun Chen, E-mail: vetchj@cau.edu.cn; Jingyi Liu, E-mail: liujingyi@shvri.ac.cn * These authors contributed equally to this study.

Cite this article: 

Chuanwen Tian, Yingnan Liu, Dongdong Di, Zhenhua Xie, Yao Li, Rongrong Wang, Jie Li, Jingyi Liu, Hongjun Chen. 2025. Immunogenicity and efficacy of an LNP-mRNA prepared from African swine fever virus K205R. Journal of Integrative Agriculture, 24(10): 4026-4033.

Afe A E, Shen Z J, Guo X, Zhou R, Li K. 2023. African swine fever virus interaction with host innate immune factors. Viruses15, 1220.

Alonso C, Borca M, Dixon L, Revilla Y, Rodriguez F, Escribano J M, Ictv Report C. 2018. ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology99, 613–614.

Anderson E J, Rouphael N G, Widge A T, Jackson L A, Roberts P C, Makhene M, Chappell J D, Denison M R, Stevens L J, Pruijssers A J, McDermott A B, Flach B, Lin B C, Doria-Rose N A, O’Dell S, Schmidt S D, Corbett K S, Swanson 2nd P A, Padilla M, Neuzil K M, et al. 2020. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. New England Journal of Medicine383, 2427–2438.

Blome S, Gabriel C, Beer M. 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine32, 3879–3882.

Chen T, Zhu S, Wei N, Zhao Z, Niu J, Si Y, Cao S, Ye J. 2022. Protective immune responses induced by an mRNA-LNP vaccine encoding prM-E proteins against Japanese Encephalitis virus Infection. Viruses14, 1121.

Deutschmann P, Forth J H, Sehl-Ewert J, Carrau T, Viaplana E, Mancera J C, Urniza A, Beer M, Blome S. 2023. Assessment of African swine fever vaccine candidate ASFV-G-∆MGF in a reversion to virulence study. NPJ Vaccines8, 78.

Dixon L K, Islam M, Nash R, Reis A L. 2019. African swine fever virus evasion of host defences. Virus Research266, 25–33.

Galindo I, Alonso C. 2017. African swine fever virus: A review. Viruses9, 103.

Hua R H, Liu J, Zhang S J, Liu R Q, Zhang X F, He X J, Zhao D M, Bu Z G. 2023. Mammalian cell-line-expressed CD2v protein of African swine fever virus provides partial protection against the HLJ/18 strain in the early infection stage. Viruses15, 1467.

Jiang Z, Zhu L, Cai Y, Yan J, Fan Y, Lv W, Gong S, Yin X, Yang X, Sun X, Xu Z. 2020. Immunogenicity and protective efficacy induced by an mRNA vaccine encoding gD antigen against pseudorabies virus infection. Veterinary Microbiology251, 108886.

Kollnberger S D, Gutierrez-Castaneda B, Foster-Cuevas M, Corteyn A, Parkhouse R M E. 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. Journal of Genernal Virology83, 1331–1342.

Kowalczyk A, Doener F, Zanzinger K, Noth J, Baumhof P, Fotin-Mleczek M, Heidenreich R. 2016. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine34, 3882–3893.

Lokhandwala S, Waghela S D, Bray J, Sangewar N, Charendoff C, Martin C L, Hassan W S, Koynarski T, Gabbert L, Burrage T G, Brake D, Neilan J, Mwangi W. 2017. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS ONE12, e0177007.

Lopez E, van Heerden J, Bosch-Camos L, Accensi F, Navas M J, Lopez-Monteagudo P, Argilaguet J, Gallardo C, Pina-Pedrero S, Salas M L, Salt J, Rodriguez F. 2020. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in cross-protection. Viruses12, 1474.

Lv C, Yang J, Zhao L, Wu C, Kang C, Zhang Q, Sun X, Chen X, Zou Z, Jin M. 2022. Infection characteristics and transcriptomics of African swine fever virus in bama minipigs. Microbiology Spectrum10, e0383422.

Miao L, Zhang Y, Huang L. 2021. mRNA vaccine for cancer immunotherapy. Molecular Cancer20, 41.

Mulligan M J, Lyke K E, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Raabe V, Bailey R, Swanson K A, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi P Y, Tureci O, Tompkins K R, Walsh E E, Frenck R, et al. 2021. Publisher correction: Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature590, E26.

Reis A L, Parkhouse R M E, Penedos A R, Martins C, Leitao A. 2007. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. Journal of General Virology88, 2426–2434.

Schnee M, Vogel A B, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. 2016. An mRNA vaccine encoding Rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. Plos Neglected Tropical Diseases10, e0004746.

Seo H, Jeon L, Kwon J, Lee H. 2023. High-precision synthesis of RNA-loaded lipid nanoparticles for biomedical applications. Advanced Healthcare Materials,12, e2203033.

Tran X H, Phuong L T T, Huy N Q, Thuy D T, Nguyen V D, Quang P H, Ngon Q V, Rai A, Gay C G, Gladue D P, Borca M V. 2022. Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-ΔI177L. Viruses14, 896.

Veiga N, Goldsmith M, Granot Y, Rosenblum D, Dammes N, Kedmi R, Ramishetti S, Peer D. 2018. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nature Communications9, 4493.

Wang Q, Zhou L, Wang J, Su D, Li D, Du Y, Yang G, Zhang G, Chu B. 2022. African swine fever virus K205R induces ER stress and consequently activates autophagy and the NF-kappaB signaling pathway. Viruses14, 394.

Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. 2021. mRNA vaccine: A potential therapeutic strategy. Molecular Cancer20, 33.

Wu X, Xiao L, Peng B, Wang Y, Yang Z, Yao X, Hu L, Lin X. 2016. Prokaryotic expression, purification and antigenicity analysis of African swine fever virus pK205R protein. Polish Journal of Veterinary Sciences19, 41–48.

Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu H J, Hu R. 2018. Emergence of african swine fever in China, 2018. Transboundary and Emerging Diseases65, 1482–1484.

[1] Tengteng Xu, Mengya Zhang, Qiuchen Liu, Xin Wang, Pengfei Luo, Tong Liu, Yelian Yan, Naru Zhou, Yangyang Ma, Tong Yu, Yunsheng Li, Zubing Cao, Yunhai Zhang. 18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3185-3198.
[2] Gaosong Liu, Xuelian Lü, Qiufeng Tian, Wanjiang Zhang, Fei Yi, Yueling Zhang, Shenye Yu. Deletion of Salmonella pathogenicity islands SPI-1, 2 and 3 induces substantial morphological and metabolic alternation and protective immune potential[J]. >Journal of Integrative Agriculture, 2025, 24(1): 272-289.
[3] Jun Lü, Jingxiang Chen, Yutao Hu , Lin Chen, Shihui Li, Yibing Zhang, Wenqing Zhang.

CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2006-2017.

[4] SONG Jin-xing, WANG Meng-xiang, ZHANG Yi-xuan, WAN Bo, DU Yong-kun, ZHUANG Guo-qing, LI Zi-bin, QIAO Song-lin, GENG Rui, WU Ya-nan, ZHANG Gai-ping. Identification and epitope mapping of anti-p72 single-chain antibody against African swine fever virus based on phage display antibody library[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2834-2847.
[5] SUN Li-na, LIU Yan-di, ZHANG Huai-jiang, YAN Wen-tao, YUE Qiang, QIU Gui-sheng. Molecular characterization of the ryanodine receptor from Adoxophyes orana and its response to lethal and sublethal doses of chlorantraniliprole[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1585-1595.
[6] JIANG Cheng-gang, SUN Ying, ZHANG Fan, AI Xin, FENG Xiao-ning, HU Wei, ZHANG Xian-feng, ZHAO Dong-ming, BU Zhi-gao, HE Xi-jun. Viricidal activity of several disinfectants against African swine fever virus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3084-3088.
[7] LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong . Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus[J]. >Journal of Integrative Agriculture, 2021, 20(1): 212-226.
[8] SHAN Yan-ju, JI Gai-ge, ZOU Jian-min, ZHANG Ming, TU Yun-jie, LIU Yi-fan, JU Xiao-jun, SHU Jing-ting. PGC-1α differentially regulates the mRNA expression profiles of genes related to myofiber type specificity in chicken[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2083-2094.
[9] Chalisa Chaengsakul, Damrongvudhi Onwimol, Pasajee Kongsil,Sawita Suwannarat. Ethanol production and mitochondrial-related gene expression of maize (Zea mays) seed during storage[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2435-2445.
[10] LU Yun-feng, CHEN Ji-bao, ZHANG Bo, LI Qing-gang, WANG Zhi-xiu, ZHANG Hao, WU Ke-liang . Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1789-1799.
[11] LUO Zong-gang, ZHANG Kai, CHEN Lei, YANG Yuan-xin, FU Peng-hui, WANG Ke-tian, WANG Ling, LI Ming-zhou, LI Xue-wei, ZUO Fu-yuan, WANG Jin-yong. Molecular characterization and tissue expression profile of the Dnmts gene family in pig[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1367-1374.
[12] WU Xiao-yun, DING Xue-zhi, CHU Min, GUO Xian, BAO Peng-jia, LIANG Chun-nian, YAN Ping. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens)[J]. >Journal of Integrative Agriculture, 2015, 14(4): 741-748.
[13] JIANG Shou-qun, JIANG Zong-yong, ZHOU Gui-lian, LIN Ying-cai , ZHENG Chun-tian. Effects of Dietary Isoflavone Supplementation on Meat Quality and Oxidative Stability During Storage in Lingnan Yellow Broilers[J]. >Journal of Integrative Agriculture, 2014, 13(2): 387-393.
[14] SONG Yue-qin, DONG Jun-feng, QIAO Hui-li , WU Jun-xiang. Molecular Characterization, Expression Patterns and Binding Properties of Two Pheromone-Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck)[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2709-2720.
[15] GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula. Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization[J]. >Journal of Integrative Agriculture, 2013, 12(8): 1431-1440.
No Suggested Reading articles found!