Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (06): 1367-1374    DOI: 10.1016/S2095-3119(16)61512-5
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular characterization and tissue expression profile of the Dnmts gene family in pig
LUO Zong-gang1, 2, 3*, ZHANG Kai4*, CHEN Lei1, 3, YANG Yuan-xin2, FU Peng-hui2, WANG Ke-tian1, WANG Ling2, LI Ming-zhou5, LI Xue-wei5, ZUO Fu-yuan2, WANG Jin-yong1, 3

1 Chongqing Academy of Animal Science, Chongqing 402460, P.R.China

2 Department of Animal Science, Southwest University (Rongchang Campus), Chongqing 402460, P.R.China

3 Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, P.R.China

4 Sichuan Academy of Grassland Sciences, Chengdu 610000, P.R.China

5 Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu 611130, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  DNA methyltransferases (Dnmts) comprise a family of proteins which involved in the establishment and maintenance of DNA methylation patterns.  In pig, the molecular characterization and tissue expression profile of Dnmt gene family are not clear.  To solve this problem, reverse transcriptase PCR and rapid amplification of cDNA ends were used to clone the sequences of the porcine Dnmt2 and Dnmt3b genes.  Furthermore, the mRNA expression profiles of Dnmt1, Dnmt2, Dnmt3a and Dnmt3b genes from 54 adult tissues and 2 entire fetuses of Rongchang pig were analyzed by quantitative real-time PCR (qRT-PCR).  As a result, the lengths of porcine Dnmt2 and Dnmt3b gene cDNAs were 1 227 and 2 559 bp with cytosine-C5 specific DNA methylase domain, respectively.  The four Dnmt genes were highly expressed in longissimus dorsi muscle (P<0.01).  Dnmt1 is highly expressed in heart (P<0.01) and Dnmt 2 shows its preference in liver and seminal vesicle tissue (P<0.01).  Dnmt3a and Dnmt3b are highly expressed in the two fetus stages (P<0.01).  All these results suggested that each gene has its specific expression profile, and deeper study is required to dig more details between the methylation level and Dnmt family mRNA expressions in different tissues.
Keywords:  pig      Dnmt gene family      cloning      mRNA expression  
Received: 26 August 2016   Accepted:
Fund: 

This work was supported by the grants from the Specialized Doctor Research Fund of Southwestern University of China (2013Bsr8) and the Youth Fund of Rongchang Campus of Southwest University, China (20700429), the Chongqing Fund of Application and Development, China (cstc2013yykfC80003), the Chongqing Fund of Basic Research, China (15428, 14440), and the National Biological Breeding Capacity Building and Industrialization Projects, China (2014-2573).

Corresponding Authors:  WANG Jin-yong, Tel: +86-23-46792073, E-mail: dnmtpig@163.com   

Cite this article: 

LUO Zong-gang, ZHANG Kai, CHEN Lei, YANG Yuan-xin, FU Peng-hui, WANG Ke-tian, WANG Ling, LI Ming-zhou, LI Xue-wei, ZUO Fu-yuan, WANG Jin-yong. 2017. Molecular characterization and tissue expression profile of the Dnmts gene family in pig. Journal of Integrative Agriculture, 16(06): 1367-1374.

Bartolomei M S, Tilghman S M. 1997. Genomic imprinting in mammals. Annual Review of Genetics, 31, 493–525.
Bestor T H. 2000. The DNA methyltransferases of mammals. Human Molecular Genetics, 9, 2395–2402.
Chung Y G, Ratnam S, Chaillet J R, Latham K E. 2003. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biology of Reproduction, 69, 146–153.
Dong A, Yoder J A, Zhang X, Zhou L, Bestor T H, Cheng X. 2001. Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA. Nucleic Acids Research, 29, 439–448.
Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman L J. 2006. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnology, 6, 41.
Golding M C, Westhusin M E. 2003. Analysis of DNA (cytosine 5)

methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene Expression Patterns, 3, 551–558.
Goll M G, Kirpekar F, Maggert K A, Yoder J A, Hsieh C L, Zhang X, Golic K G, Jacobsen S E, Bestor T H. 2006. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 311, 395–398.
Gruenbaum Y, Stein R, Cedar H, Razin A. 1981. Methylation of CpG sequences in eukaryotic DNA. FEBS Letters, 124, 67–71.
Hermann A, Schmitt S, Jeltsch A. 2003. The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. The Journal of Biological Chemistry, 278, 31717–31721.
Huan Y, Wang H, Wu Z, Zhang J, Liu Z, He H. 2015. The expression patterns of DNA methylation reprogramming related genes are associated with the developmental competence of cloned embryos after zygotic genome activation in pigs. Gene Expression Patterns, 18, 1–7.
Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl.), 245–254.
Jeong Y S, Oh K B, Park J S, Kim J S, Kang Y K. 2009. Cytoplasmic localization of oocyte-specific variant of porcine DNA methyltransferase-1 during early development. Developmental Dynamics, 238, 1666–1673.
Lee J T. 2003. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? Current Biology, 13, R242–R254.
Leonhardt H, Page A W, Weier H U, Bestor T H. 1992. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell, 71, 865–873.
Li E, Bestor T H, Jaenisch R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–926.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods, 25, 402–408.
Okano M, Bell D W, Haber D A, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–257.
Okano M, Xie S, Li E. 1998a. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics, 19, 219–220.
Okano M, Xie S, Li E. 1998b. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Research, 26, 2536–2540.
Prokhortchouk E, Defossez P A. 2008. The cell biology of DNA methylation in mammals. Biochimica et Biophysica Acta, 1783, 2167–2173.
Saradalekshmi K R, Neetha N V, Sathyan S, Nair I V, Nair C M, Banerjee M. 2014. DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS ONE, 9, e98182.
Schaefer M, Steringer J P, Lyko F. 2008. The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis. PLoS ONE, 3, e1414.
Sturn A, Quackenbush J, Trajanoski Z. 2002. Genesis: Cluster analysis of microarray data. Bioinformatics, 18, 207–208.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, H34.
Wu H, Zhang Y. 2014. Reversing DNA methylation: Mechanisms, genomics, and biological functions. Cell, 156, 45–68.
Xie S, Wang Z, Okano M, Nogami M, Li Y, He W W, Okumura K, Li E. 1999. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene, 236, 87–95.
Yoder J A, Bestor T H. 1998. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Human Molecular Genetics, 7, 279–284.
Yoder J A, Soman N S, Verdine G L, Bestor T H. 1997. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. Journal of Molecular Biology270, 385–395.
 
[1] XU Kui, ZHOU Yan-rong, SHANG Hai-tao, XU Chang-jiang, TAO Ran, HAO Wan-jun, LIU Sha-sha, MU Yu-lian, XIAO Shao-bo, LI Kui. Pig macrophages with site-specific edited CD163 decrease the susceptibility to infection with porcine reproductive and respiratory syndrome virus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2188-2199.
[2] LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
[3] XIE Lei, QIN Jiang-tao, RAO Lin, CUI Deng-shuai, TANG Xi, XIAO Shi-jun, ZHANG Zhi-yan, HUANG Lu-sheng. Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1489-1501.
[4] XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo. The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome[J]. >Journal of Integrative Agriculture, 2023, 22(1): 202-213.
[5] CHEN Hong-yan, ZHU Zhu, WANG Xiao-wen, LI Yang-yang, HU Dan-ling, ZHANG Xue-fei, JIA Lu-qi, CUI Zhi-bo, SANG Xian-chun. Less hairy leaf 1, an RNaseH-like protein, regulates trichome formation in rice through auxin[J]. >Journal of Integrative Agriculture, 2023, 22(1): 31-40.
[6] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[7] WANG Kai, WU Ping-xian, WANG Shu-jie, JI Xiang, CHEN Dong, JIANG An-an, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing. Epigenome-wide DNA methylation analysis reveals differentially methylation patterns in skeletal muscle between Chinese Chenghua and Qingyu pigs[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1731-1739.
[8] WANG Peng-fei, WANG Ming, SHI Zhi-bin, SUN Zhen-zhao, WEI Li-li, LIU Zai-si, WANG Shi-da, HE Xi-jun, WANG Jing-fei. Development of a recombinant pB602L-based indirect ELISA assay for detecting antibodies against African swine fever virus in pigs[J]. >Journal of Integrative Agriculture, 2022, 21(3): 819-825.
[9] ZHU Zi-chao, LUO Sheng, LEI Bin, LI Xian-yong, CHENG Zhi-jun. A locus TUTOU2, determines the panicle apical abortion phenotype of rice (Oryza sativa L.) in tutou2 mutant[J]. >Journal of Integrative Agriculture, 2022, 21(3): 621-630.
[10] TONG Shi-feng, ZHU Mo , XIE Rui , LI Dong-feng , ZHANG Li-fan , LIU Yang.

Genome-wide detection for runs of homozygosity analysis in three pig breeds from Chinese Taihu Basin and Landrace pigs by SLAF-seq data [J]. >Journal of Integrative Agriculture, 2022, 21(11): 3293-3301.

[11] QIAN Li-li, XIE Jing-yi, GAO Ting, CAI Chun-bo, JIANG Sheng-wang, BI Han-fang, XIE Shan-shan, CUI Wen-tao. Targeted myostatin loss-of-function mutation increases type II muscle fibers in Meishan pigs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 188-198.
[12] WU Ping-xian, ZHOU Jie, WANG Kai, CHEN De-juan, YANG Xi-di, LIU Yi-hui, JIANG An-an, SHEN Lin-yuan, JIN Long, XIAO Wei-hang, JIANG Yan-zhi, LI Ming-zhou, ZHU Li, ZENG Yang-shuang, XU Xu, QIU Xiao-tian, LI Xue-wei, TANG Guo-qing. Identifying SNPs associated with birth weight and days to 100 kg traits in Yorkshire pigs based on genotyping-by-sequencing[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2483-2490.
[13] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
[14] WANG Kai, WU Ping-xian, CHEN De-juan, ZHOU Jie, YANG Xi-di, JIANG An-an, MA Ji-deng, TANG Qian-zi, XIAO Wei-hang, JIANG Yan-zhi, ZHU Li, QIU Xiao-tian, LI Ming-zhou, LI Xue-wei, TANG Guo-qing. Genome-wide scan for selection signatures based on whole-genome re-sequencing in Landrace and Yorkshire pigs[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1898-1906.
[15] SUN Li-na, LIU Yan-di, ZHANG Huai-jiang, YAN Wen-tao, YUE Qiang, QIU Gui-sheng. Molecular characterization of the ryanodine receptor from Adoxophyes orana and its response to lethal and sublethal doses of chlorantraniliprole[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1585-1595.
No Suggested Reading articles found!