Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 4012-4025    DOI: 10.1016/j.jia.2024.04.018
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
HiBiT-tagged influenza A virus: A stable and efficient tool for antiviral reagent screening and vaccine evaluation

Zhengxiang Wang1, 2, Wentao Shen2, Xuegang Zhang2, Yanli Wei1, 2, Yingying Du2, Yingying Yu2, Jing Wang4, Qiyun Zhu1, 2, Qiaoying Zeng1#, Shuai Xu2, 3#

1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730046, China
2 State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
3 Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
4 National Animal Husbandry Service, Beijing 100125, China
 Highlights 
The reporter H9N2 virus containing HiBiT tag derived from NanoLuc luciferase was viable and genetically stable.
H9N2-HiBiT virus provided a highly efficient quantitative tool for screening antiviral compounds and evaluating immunization efficacy.
The strategy developed in this study was applicable to multiple subtypes of influenza viruses.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
【背景】A型流感病毒(Influenza A viruses, IAVs)是重要的人兽共患病病原,对养禽业造成了重大经济损失,也严重威胁公共卫生安全。疫苗和抗流感药物是流感防治的主要手段。但由于IAV持续发生变异和重组,导致疫苗有效性不断降低,现有抗流感药物的耐药毒株也接连出现。因此,科研人员需要更加高效稳定的方法用于疫苗株的不断更新以及新型抗流感药物的开发。【目的】建立一个稳定、高效的筛选工具,用于流感疫苗的免疫效果评价和抗流感病毒药物的筛选。【方法】本研究以H9N2亚型IAV作为研究模型,将来源于NanoLuc荧光素酶的仅含有11个氨基酸的小亚基HiBiT,插入到IAV基因组中NS1基因RNA结合域和效应域之间的柔性连接区域,替换NS1蛋白的74-84 aa片段。通过反向遗传技术拯救含有HiBiT荧光素酶标记的H9N2病毒。随后,对HiBiT标记病毒的遗传稳定性、复制能力和致病性等生物学特性进行检测,并探索该标记病毒在抗病毒药物筛选和疫苗免疫效果评价中的应用优势。【结果】成功拯救出含有HiBiT荧光素酶标记的H9N2病毒(H9N2-HiBiT);HiBiT标记毒株与亲本毒株在哺乳动物细胞和禽源细胞上的复制能力一致,并且HiBiT标记病毒连续传代15代后仍可以保持很高的荧光素酶活性。HiBiT标记毒株对SPF鸡和Balb/c小鼠的致病性与亲本毒株一致。抗流感药物Baloxavir处理后,HiBiT标记病毒感染细胞中的荧光素酶活性呈剂量依赖性降低,且检测效率和通量较传统滴定方法均有提高。在流感疫苗免疫鸡后采用HiBiT标记病毒进行免疫效果评价,可快速准确地检测病毒排毒水平、中和抗体水平等指标。【结论】本研究构建的含有HiBiT荧光素酶标记的报告病毒是一种稳定方便的研究工具,可用于高效筛选抗流感病毒药物和流感疫苗免疫效果评价。


Abstract  

Influenza A viruses (IAVs) possess variable pathogenic potency causing great economic losses in the poultry industry worldwide and threatening public health.  The control of IAV epidemics desperately necessitates an efficient platform for screening antiviral compounds and evaluating vaccine efficacy.  In this study, we utilized the H9N2 subtype IAV as the working model.  An 11-amino-acid HiBiT tag, derived from NanoLuc luciferase, was incorporated into the flexible linker region of the NS1 protein.  Subsequently, the recombinant HiBiT-tagged virus was rescued.  The recombinant virus exhibited high genetic stability and similar virological characteristics to the parental virus, both in vitro and in vivo.  Particularly importantly, the replication profile of the HiBiT-tagged virus can be easily measured using the Nano-Glo assay system, achieving an efficient screening platform.  Based on this platform, we have developed assays with both convenience and efficiency for screening antiviral reagents, evaluating immunization efficacy, and measuring neutralizing antibodies.

Keywords:  H9N2 IAV       luciferase tag        antiviral screening        vaccine evaluation  
Received: 11 October 2023   Online: 13 April 2024   Accepted: 22 March 2024
Fund: This work was supported by the National Key R&D Program of China (2021YFD1800204); the National Natural Science Foundation of China (32172820 and 32272972), the Youth Innovation Program of Chinese Academy of Agricultural Sciences (CAAS) (Y2023QC30) and the Agricultural Science and Technology Innovation Program of CAAS, China (CAAS-ASTIP-JBGS-20210102).
About author:  Zhengxiang Wang, E-mail: wzx4350@163.com; #Correspondence Qiaoying Zeng, E-mail: zengqy@gsau.edu.cn; Shuai Xu, E-mail: xushuai@caas.cn

Cite this article: 

Zhengxiang Wang, Wentao Shen, Xuegang Zhang, Yanli Wei, Yingying Du, Yingying Yu, Jing Wang, Qiyun Zhu, Qiaoying Zeng, Shuai Xu. 2025. HiBiT-tagged influenza A virus: A stable and efficient tool for antiviral reagent screening and vaccine evaluation. Journal of Integrative Agriculture, 24(10): 4012-4025.

Cao Y, Liu H, Liu D, Liu W, Luo T, Li J. 2022. Hemagglutinin gene variation rate of H9N2 avian influenza virus by vaccine intervention in China. Viruses14, 1043.

Hale B G, Randall R E, Ortin J, Jackson D. 2008. The multifunctional NS1 protein of influenza A viruses. Journal of General Virology89, 2359–2376.

Haviernik J, Eyer L, Yoshii K, Kobayashi S, Cerny J, Nougairede A, Driouich J S, Volf J, Palus M, de Lamballerie X, Gould E A, Ruzek D. 2021. Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antiviral Research185, 104968.

He J, Wu Q, Yu J L, He L, Sun Y, Shi Y L, Chen Q Q, Ge Y L, Zhang Z H, Li W W, Hou S, Zhu M, Wu J B, Su B, Hu W, Pan H F. 2020. Sporadic occurrence of H9N2 avian influenza infections in human in Anhui province, eastern China: A notable problem. Microbial Pathogenesis140, 103940.

Heaton N S, Leyva-Grado V H, Tan G S, Eggink D, Hai R, Palese P. 2013. In vivo bioluminescent imaging of influenza a virus infection and characterization of novel cross-protective monoclonal antibodies. Journal of Virology87, 8272–8281.

Hutchinson E C, Charles P D, Hester S S, Thomas B, Trudgian D, Martinez-Alonso M, Fodor E. 2014. Conserved and host-specific features of influenza virion architecture. Nature Communications5, 4816.

Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, Yasuhara A, Takada K, Ito M, Nakajima N, Takahashi K, Lopes T J S, Dutta J, Khan Z, Kriti D, van Bakel H, Tokita A, Hagiwara H, Izumida N, Kuroki H, et al. 2020. Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese patients are fit and transmit through respiratory droplets. Nature Microbiology5, 27–33.

Karakus U, Thamamongood T, Ciminski K, Ran W, Gunther S C, Pohl M O, Eletto D, Jeney C, Hoffmann D, Reiche S, Schinkothe J, Ulrich R, Wiener J, Hayes M G B, Chang M W, Hunziker A, Yanguez E, Aydillo T, Krammer F, Oderbolz J, et al. 2019. MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature567, 109–112.

Karlsson E A, Meliopoulos V A, Savage C, Livingston B, Mehle A, Schultz-Cherry S. 2015. Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nature Communications6, 6378.

Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H. 2005. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology340, 70–83.

Li F, Feng L, Pan W, Dong Z, Li C, Sun C, Chen L. 2010. Generation of replication-competent recombinant influenza A viruses carrying a reporter gene harbored in the neuraminidase segment. Journal of Virology84, 12075–12081.

Li P, Cui Q, Wang L, Zhao X, Zhang Y, Manicassamy B, Yang Y, Rong L, Du R. 2018. A simple and robust approach for evaluation of antivirals using a recombinant influenza virus expressing Gaussia luciferase. Viruses10, 325.

Li P, Niu M, Li Y, Xu M, Zhao T, Cao X, Liang C, Wang Y, Li Y, Xiao C. 2022. Human infection with H3N8 avian influenza virus: A novel H9N2-original reassortment virus. Journal of Infection85, e187–e189.

Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K. 2005. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. Journal of Virology79, 12058–12064.

Lima M A, Skidmore M, Khanim F, Richardson A. 2021. Development of a nano-luciferase based assay to measure the binding of SARS-CoV-2 spike receptor binding domain to ACE-2. Biochemical and Biophysical Research Communications534, 485–490.

Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, Garcia-Sastre A. 2010. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proceedings of the National Academy of Sciences of the United States of America107, 11531–11536.

Matumoto M. 1949. A note on some points of calculation method of LD50 by Reed and Muench. Journal of Experimental Medicine20, 175–179.

Noshi T, Kitano M, Taniguchi K, Yamamoto A, Omoto S, Baba K, Hashimoto T, Ishida K, Kushima Y, Hattori K, Kawai M, Yoshida R, Kobayashi M, Yoshinaga T, Sato A, Okamatsu M, Sakoda Y, Kida H, Shishido T, Naito A. 2018. In vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antiviral Research160, 109–117.

Oh-Hashi K, Furuta E, Fujimura K, Hirata Y. 2017. Application of a novel HiBiT peptide tag for monitoring ATF4 protein expression in Neuro2a cells. Biochemistry and Biophysics Reports12, 40–45.

Pan W, Dong Z, Li F, Meng W, Feng L, Niu X, Li C, Luo Q, Li Z, Sun C, Chen L. 2013. Visualizing influenza virus infection in living mice. Nature Communications4, 2369.

Shi J, Deng G, Ma S, Zeng X, Yin X, Li M, Zhang B, Cui P, Chen Y, Yang H, Wan X, Liu L, Chen P, Jiang Y, Guan Y, Liu J, Gu W, Han S, Song Y, Liang L, et al. 2018. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host & Microbe24, 558–568.e7.

Thulasi Raman S N, Zhou Y. 2016. Networks of host factors that interact with NS1 protein of influenza A virus. Frontiers in Microbiology7, 654.

Wang Y, Ge X, Zhang Y, Guo X, Han J, Zhou L, Yang H. 2022. Construction of a porcine reproductive and respiratory syndrome virus with Nanoluc luciferase reporter: A stable and highly efficient tool for viral quantification both in vitro and in vivoMicrobiology Spectrum10, e0027622.

WHO (World Health Organization). 2021. Cumulative number of confirmed human cases for avian influenza A(H5N1) reported to World Health Organization, 2003–2021. 22 June, 2021.

Yin X, Deng G, Zeng X, Cui P, Hou Y, Liu Y, Fang J, Pan S, Wang D, Chen X, Zhang Y, Wang X, Tian G, Li Y, Chen Y, Liu L, Suzuki Y, Guan Y, Li C, Shi J, et al. 2021. Genetic and biological properties of H7N9 avian influenza viruses detected after application of the H7N9 poultry vaccine in China. PLoS Pathogens17, e1009561.

Zhang C, Zhang G, Zhang Y, Lin X, Zhao X, Cui Q, Rong L, Du R. 2023. Development of an HiBiT-tagged reporter H3N2 influenza A virus and its utility as an antiviral screening platform. Journal of Medical Virology95, e28345.

Zhang G, Xu L, Zhang J, Fang Q, Zeng J, Liu Y, Ke C. 2022. A H9N2 human case and surveillance of avian influenza viruses in live poultry markets-Huizhou city, Guangdong province, China, 2021. China CDC Weekly4, 8–10.

Zhao X, Wang L, Cui Q, Li P, Wang Y, Zhang Y, Yang Y, Rong L, Du R. 2018. A mechanism underlying attenuation of recombinant influenza A viruses carrying reporter genes. Viruses10, 679.

Zhu Q, Yang H, Chen W, Cao W, Zhong G, Jiao P, Deng G, Yu K, Yang C, Bu Z, Kawaoka Y, Chen H. 2008. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. Journal of Virology82, 220–228.

No related articles found!
No Suggested Reading articles found!