Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 3998-4017    DOI: 10.1016/j.jia.2023.12.013
Special Issue: 水稻耕作栽培Rice Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A comparative study on the role of conventional, chemical, and nanopriming for better salt tolerance during seed germination of direct seeding rice

Yixue Mu1, 2, Yusheng Li1, 2, Yicheng Zhang1, 2, Xiayu Guo3, 4, Shaokun Song1, 2, Zheng Huang1, 3, Lin Li1, 2, Qilin Ma1, 2#, Mohammad Nauman Khan1, 2#, Lixiao Nie1, 2#

1 School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication) of Hainan University, Hainan University, Sanya 572000, China

2 College of Tropical Crops, Hainan University, Haikou 570228, China

3 National Innovation Center of Saline–Alkali Tolerant Rice in Sanya, Sanya 572000, China

4 Hunan Hybrid Rice Research Center, Changsha 410125, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

胁迫是作物生产和粮食安全面临的重大风险之一,严重阻碍了直播水稻的种子萌发和幼苗生长。据报道,纳米颗粒在非生物胁迫下有效地参与了种子萌发的生理生化过程。然而,目前还没有报道过关于传统、化学和纳米种子引发技术提高直播水稻种子耐盐发芽的比较研究。本研究在不同盐度(01.53‰,利两个杂交水稻品种(CY1000LLY506)以及不同的种子引发技术引发、化学引发(抗坏血酸、水杨酸和γ-氨基丁酸)和纳米引发(纳米氧化锌颗粒)进行了生长大田试验。结果表明,盐胁迫抑制直播水稻种子发芽、发芽指数、活力指数和幼苗生长。主要表现为盐胁迫增加了水稻幼苗内活性氧(H2O2O2•−丙二醛(MDA)含量的积累水稻幼苗地上部钠离子含量,降低了水稻幼苗地上部钾离子含量而种子引发技术均不同程度提高了直播水稻的耐盐发芽能力中,纳米氧化锌引发的出苗效果最佳进一步研究发现,纳米氧化锌引发处理显著提高了水稻种子萌发过程中的α-淀粉酶、可溶性糖和可溶性蛋白含量抗氧化酶活性。此外,纳米氧化锌引发诱导水稻种子耐盐发芽的另一机制与种子萌发过程中水稻体内较高的K+离子含量有关。因此,纳米氧化锌引发处理可被用作一种盐胁迫条件下促进直播水稻萌发出苗的种子处理技术



Abstract  

Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.  The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.  Recently, nanoparticles (NPs) have been reported to be effectively involved in many plant physiological processes, particularly under abiotic stresses.  To our knowledge, no comparative studies have been performed to study the efficiency of conventional, chemical, and seed nanopriming for better plant stress tolerance.  Therefore, we conducted growth chamber and field experiments with different salinity levels (0, 1.5, and 3‰), two rice varieties (CY1000 and LLY506), and different priming techniques such as hydropriming, chemical priming (ascorbic acid, salicylic acid, and γ-aminobutyric acid), and nanopriming (zinc oxide nanoparticles).  Salt stress inhibited rice seed germination, germination index, vigor index, and seedling growth.  Also, salt stress increased the over accumulation of reactive oxygen species (H2O2 and O2-·) and malondialdehyde (MDA) contents.  Furthermore, salt-stressed seedlings accumulated higher sodium (Na+) ions and significantly lower potassium (K+) ions.  Moreover, the findings of our study demonstrated that, among the different priming techniques, seed nanopriming with zinc oxide nanoparticles (NanoZnO) significantly contributed to rice salt tolerance.  ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.  The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase, soluble sugar, and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.  Moreover, another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of K+ ions content.  Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique, promoting global crop production in salt-affected agricultural lands.

Keywords:  rice       salinity        ROS scavenging        seed nanopriming        germination        mechanism  
Received: 10 July 2023   Accepted: 07 November 2023
Fund: 
This work is supported by the Foundation of Major Projects in Hainan Province, China (ZDKJ202001) and the Research Initiation Fund of Hainan University, China (KYQD (ZR) 19104).

About author:  Yixue Mu, E-mail: 740731198@qq.com; #Correspondence Qilin Ma, E-mail: hbhnqlm@163.com; Mohammad Nauman Khan, E-mail: 184268@hainanu.edu.cn; Lixiao Nie, E-mail: lxnie@hainanu.edu.cn *These authors contributed equally to this study.

Cite this article: 

Yixue Mu, Yusheng Li, Yicheng Zhang, Xiayu Guo, Shaokun Song, Zheng Huang, Lin Li, Qilin Ma, Mohammad Nauman Khan, Lixiao Nie. 2024. A comparative study on the role of conventional, chemical, and nanopriming for better salt tolerance during seed germination of direct seeding rice. Journal of Integrative Agriculture, 23(12): 3998-4017.

AOSA (Association of Official Seed Analysts). 1990. Rules for testing seeds. Journal of Seed Technology16, 31–78.

Ahanger M ATomar N STittal MArgal SAgarwal R M. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology Molecular Biology of Plants23, 731–744.

Ahmad F, Kamal A, Singh A, Ashfaque F, Alamri S, Siddiqui M H, Khan M I R. 2021. Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up-regulation of antiporter genes. Plant Biology23, 113–121.

Al-Salama Y. 2022. Effect of seed priming with ZnO nanoparticles and saline irrigation water in yield and nutrients uptake by wheat plants. Environmental Sciences Proceedings16, 37.

An J, Hu P, Li F, Wu H, Shen Y, White J C, Tian X, Li Z, Giraldo J P. 2020. Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nano particles. Environmental Science-Nano7, 2214–2228.

Arafat Abdel Hamed A L, Abu Alhmad M F, Abdelfattah K E. 2017. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. Journal of Plant Growth Regulation36, 60–70.

Aragão V P M, Navarro B V, Passamani L Z, Macedo A F, Floh E I S, Silveira V, Santa-Catarina C. 2015. Free amino acids, polyamines, soluble sugars and proteins during seed germination and early seedling growth of Cedrela fissilis Vellozo (Meliaceae), an endangered hardwood species from the Atlantic Forest in Brazil. Theoretical and Experimental Plant Physiology27, 157–169.

Ashraf M, McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Critical Reviews in Plant Sciences23, 157–174.

Baldim V, Bedioui F, Mignet N, Margaill I, Berret J F. 2018. The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale10, 6971–6980.

Banerjee A, Roychoudhury A. 2021. Role of sugars in mediating abiotic stress tolerance in legumes. Abiotic Stress and Legumes. Academic Press, US. pp. 93–103.

Bates L S, Waldren R P, Teare I D. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil39, 205–207.

Bernfeld P. 1955. Methods in Enzymology. Academic Press, New York. pp. 149–158.

Bradford M M. 1976. A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry72, 248–254.

Chen H N, Tao L Y, Shi J M, Han X R, Cheng X G. 2021. Exogenous salicylic acid signal reveals an osmotic regulatory role in priming the seed germination of Leymus chinensis under salt–alkali stress. Environmental and Experimental Botany188, 104498.

Chen K, Arora R. 2013. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany94, 33–45.

Chen Z, Cao X L, Niu J P. 2021. Effects of exogenous ascorbic acid on seed germination and seedling salt-tolerance of alfalfa. PLoS ONE16, e0250926.

Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Ma X, Huang L, Nie G, Liu W, Peng Y. 2018. The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of White Clover associated with Na+/K+ transportation, dehydrins accumulation, and stress-related genes expression in White Clover. International Journal of Molecular Sciences19, 2520.

Damaris R N, Lin Z, Yang P, He D. 2019. The rice alpha-amylase, conserved regulator of seed maturation and germination. International Journal of Molecular Sciences20, 1–17.

Deinlein U, Stephan A B, Horie T, Luo W, Xu G, Schroeder J I. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science19, 371–379.

Dubois M, Giles K A, Hamilton J J, Roberes P A, Smith F. 1956. Colorometric method for determination of sugars and related substances. Analytical Chemistry28, 350–356.

El-Badri A M, Batool M, Wang C, Hashem A M, Tabl K M, Nishawy E, Kuai J, Zhou G, Wang B. 2021. Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress. Ecotoxicological and Environmental Safety225, 112695.

El-Hendawy S, Elshafei A, Al-Suhaibani N, Alotabi M, Hassan W, Dewir Y H, Abdella K. 2019. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. Journal of Plant Interactions14, 151–163.

Faizan M, Bhat J A, Chen C, Alyemeni M N, Wijaya L, Ahmad P, Yu F. 2021. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry161, 122–130.

Fan L Q, Yang L W, Gao H B, Wu X L, Xia Q P, Gong B B. 2012. Effects of exogenous gamma-aminobutyric acid on polyamine metabolism of melon seedlings under hypoxia stress. Journal of Applied Ecology, 23, 1599–1606.

Feghhenabi F, Hadi H, Khodaverdiloo H, van Genuchten M T. 2020. Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management231, 106022.

Gul H, Naz F, Hamayun M, Sayyed A, Sherwani S K. 2014. Effect of NaCl stress on Pisum sativum germination and seedling growth with the influence of seed priming with potassium (KCl and KOH). Eurasian Journal of Agriculture & Environmental Science14, 1304–1311.

Guo J, Du M, Tian H, Wang B. 2020. Exposure to high salinity during seed development markedly enhances seedling emergence and fitness of the progeny of the extreme halophyte Suaeda salsaFrontiers in Plant Science11, 1–11.

Hameed A, Sheikh M A, Hameed A, Farooq T, Basra S M A, Jamil A. 2014. Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. Philippine Agricultural Scientist97, 294–299.

Hemalatha G, Renugadevi J, Evera T. 2017. Seed priming to alleviate the effect of salinity stress in rice. International Journal of Chemical Studies5, 1140–1143.

Huang P, He L, Abbas A, Sadam H, Saddam H, Du D, Hafeez M B, Balooch S, Zahra N, Ren X, Rafiq M, Saqib M. 2021. Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants10, 749.

Iqbal M, Ashraf M, Jamil A, ur-Rehman S. 2006. Does seed priming induce changes in the levels of some endogenous plant hormones in hexaploid wheat plants under salt stress? Journal of Integrative Plant Biology48, 181–189.

Iqbal N, Umar S, Khan N A, Khan M I R. 2014. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environmental and Experimental Botany100, 34–42.

Jafar M Z, Farooq M, Cheema M A, Afzal I, Basra S M A, Wahid M A, Aziz T, Shahid M. 2012. Improving the performance of wheat by seed priming under saline conditions. Journal of Agronomy and Crop Science198, 38–45.

Jini D, Joseph B. 2017. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Science24, 97–108.

Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. 2002. The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiology128, 1264–1270.

Khalid M F, Hussain S, Anjum M A, Ejaz S, Ahmad M, Jan M, Zafar S, Zakir I, Ali M A, Ahmad N, Rao M J, Ahmad S. 2019. Hydropriming for plant growth and stress tolerance. In: Hasanuzzaman M, Fotopoulos V, eds., Priming and Pretreatment of Seeds and SeedlingsImplication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants. Springer, Singapore. pp. 373–384.

Khan I, Raza M A, Awan S A, Shah G A, Rizwan M, Ali B, Tariq R, Hassan M J, Alyemeni M N, Brestic M, Zhang X, Ali S, Huang L. 2020. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry156, 221–232.

Khan M N, Fu C, Li J, Tao Y, Li Y, Hu J, Chen L, Khan Z, Wu H, Li Z. 2023. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere310, 136911.

Khan M N, Li Y, Khan Z, Chen L, Liu J, Hu J, Wu H, Li Z. 2021. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology19, doi: 10.1186/s12951-021-01026-9.

Khan M N, Zhang J, Luo T, Liu J, Rizwan M, Fahad S, Xu Z, Hu L. 2019. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products140, 111597.

Li Y, Liang L, Li W, Ashraf U, Ma L, Tang X, Pan S, Tian H, Mo Z. 2021. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology19, doi: 10.1186/s12951-021-00820-9.

Liu H, Hussain S, Zheng M, Peng S, Huang J, Cui K, Nie L. 2015. Dry seeded rice as an alternative to transplantedflooded rice in Central China. Agronomy for Sustainable Development35, 285–294.

Liu J, Li L, Yuan F, Chen M. 2019. Exogenous salicylic acid improves the germination of Limonium bicolor seeds under salt stress. Plant Signal & Behavior14, 1–8.

Mahakham W, Sarmah A K, Maensiri S, Theerakulpisut P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 1–21.

Mazhar M W, Ishtiaq M, Hussain I, Parveen A, Bhatti K H, Azeem M, Thind S, Ajaib M, Maqbool M, Sardar T, Muzammil K, Nasir N. 2022. Seed nano-priming with zinc oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE17, 1–18.

Miladinov Z, Balesevic-Tubic S, Djordjevic V, Djukic V, Ilic A, Cobanovic L. 2015. Optimal time of soybean seed priming and primer effect under salt stress conditions. Journal of Agricultural Science60, 109–117.

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell and Environment33, 453–467.

Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell and Environment25, 239–250.

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology59, 651–681.

Mutlu S, Atici Ö, Nalbantoglu B. 2009. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologi Plantarum53, 334–338.

Nasri N, Kaddour R B, Mahmoudi H, Bouraoui N K. 2011. The effect of osmopriming on germination, seedling growth and phosphatase activities of lettuce under saline condition. African Journal of Biotechnology10, 14366–14372.

Nciizah A D, Rapetsoa M C, Wakindiki I I, Zerizghy M G. 2020. Micronutrient seed priming improves maize (Zea mays L.) early seedling growth in a micronutrient deficient soil. Heliyon6, e04766.

Othman Y, Al-Karaki G, Al-Horani A. 2006. Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences2, 11–15.

Pál M. 2018. Seed priming, a re-discovered old method. Journal of Soil Plant Biology1, 21–23.

Panuccio M R, Chaabani S, Roula R, Muscolo A. 2018. Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiology and Biochemistry132, 465–474.

Parvaiz A, Satyawati S. 2008. Salt stress and phyto-biochemical responses of plants - A review. Plant Soil and Environment54, 89–99.

Pereira A D E S, Oliveira H C, Fraceto L F, Santaella C. 2021. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials11, 1–29.

Pickson R B, Gui P, Chen A, Boateng E. 2022. Empirical analysis of rice and maize production under climate change in China. Environmental Science Pollution Research29, 70242–70261.

Plaksenkova I, Kokina I, Petrova A, Jermaļonoka M, Gerbreders V, Krasovska M. 2020. The impact of zinc oxide nanoparticles on cytotoxicity, genotoxicity, and mirna expression in barley (Hordeum vulgare L.) seedlings. Scientific World Journal2020, 6649746.

Pradhan N, Prakash P, Manimurugan C, Tiwari S K, Sharma R P, Singh P. 2015. Screening of tomato genotypes using osmopriming with PEG 6000 under salinity stress. Research Environment Life Sciences8, 245–250.

Rehman H U, Iqbal H, Basra S M A, Afzal H, Farooq M, Wakeel A, Wang N. 2015. Seed priming improves early seedling vigor, growth and productivity of spring maize. Journal of Integrative Agriculture14, 1745–1754.

Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry160, 341–351.

Rajjou L, Debeaujon I. 2008. Seed longevity: Survival and maintenance of high germination ability of dry seeds. Current Biology331, 796–805.

Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. 2012. Seed germination and vigor. Annual Review Plant Biology63, 507–533.

Rico C M, Morales M I, McCreary R, Castillo-Michel H, Barrios A C, Hong J, Tafoya A, Lee W Y, Varela-Ramirez A, Peralta-Videa J R, Gardea-Torresd ey J L. 2013. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmantal Science & Technology47, 14110–14118.

Rossi L, Zhang W, Lombardini L, Ma X. 2016. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environmental Pollution219, 28–36.

Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry109, 54–61.

Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur J T, Aliniaeifard S, Chauhan D K, Fujita M, Hasanuzzaman M. 2022. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: An overview of the mechanisms. Plants11, 1–31.

Shah T, Latif S, Saeed F, Ali I, Ullah S, Abdullah A A, Jan S, Ahmad P. 2021. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University Science33, 101207.

Shereen A, Mumtaz S, Raza S, Khan M A, Solangi S. 2005. Salinity effects on seedling growth and yield components of different inbred rice lines. Pakistan Journal of Botany37, 131–139.

Shtull-Trauring E, Cohen A, Ben-Hur M, Tanny J, Bernstein N. 2020. Reducing salinity of treated waste water with large scale desalination. Water Research186, 116322.

Szöllösi R, Molnár Á, Kondak S, Kolbert Z. 2020. Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxicity. Plants9, 1–30.

Wang W, Peng S, Liu H, Tao Y, Huang J, Cui K, Nie L. 2017. The possibility of replacing puddled transplanted flooded rice with dry seeded rice in central China: A review. Field Crops Research214, 310–320.

Wang W Q, He A B, Peng S B, Huang J L, Cui K H, Nie L X. 2018. The effect of storage condition and duration on the deterioration of primed rice seeds. Frontiers in Plant Science9, 172.

Wang Y, Luo Z, Huang X, Yang K, Gao S, Du R. 2014. Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Hortic-Amsterdam168, 132–137.

Wang Z, Li H, Li X, Xin C, Si J, Li S, Li Y, Zheng X, Li H, Wei X, Zhang Z, Kong L, Wang F. 2019. Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Archives of Agronomy and Soil Science, 66, 1259–1273.

Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C. 2019. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to bioticand abiotic stresses. Frontiers in Plant Science10, 1–12.

Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L. 2016. Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation78, 167–178.

Zeng L, Cai J S, Li J J, Lu G Y, Li C S, Fu G P, Zhang X K, Ma H Q, Liu Q Y, Zou X L, Cheng Y. 2018. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture17, 328–335.

Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X. 2014. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE9, 0112807.

Zhang X, Wang D, Fang F, Zhen Y, Liao X. 2005. Food safety and rice production in China. Research of Agricutural Modernization26, 85–88.

Zhao C, Zhang H, Song C, Zhu J K, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. Innovation (China), 1, 100017.

Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell167, 313–324.

[1] Shan Sun, Wenjun Li, Yanfen Fang, Qianqian Huang, Zhibo Huang, Chengjing Wang, Jia Zhao, Yongqi He, Zhoufei Wang. Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(1): 61-71.
[2] Yufei Ling, Mengzhu Liu, Yuan Feng, Zhipeng Xing, Hui Gao, Haiyan Wei, Qun Hu, Hongcheng Zhang. Effects of increased seeding density on seedling characteristics, mechanical transplantation quality, and yields of rice with crop straw boards for seedling cultivation[J]. >Journal of Integrative Agriculture, 2025, 24(1): 101-113.
[3] Yuxin Liu, Chi Shen, Xiaoyu Wang, Chaogeng Xiao, Zisheng Luo, Guochang Sun, Wenjing Lu, Rungang Tian, Lijia Dong, Xueyuan Han. Mitigating ethyl carbamate production in Chinese rice wine: Role of raspberry extract[J]. >Journal of Integrative Agriculture, 2025, 24(1): 353-365.
[4] Xue Shen, Quanyu Yang, Rongjun Ao, Shengsheng Gong. Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3200-3214.
[5] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[6] Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3159-3173.
[7] Zhengyuan Xu, Lingzhen Ye, Qiufang Shen, Guoping Zhang. Advances in the study of waterlogging tolerance in plants[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2877-2897.
[8] Xinrui Li, Xiafei Li, Tao Liu, Huilai Yin, Hao Fu, Yongheng Luo, Yanfu Bai, Hongkun Yang, Zhiyuan Yang, Yongjian Sun, Jun Ma, Zongkui Chen. Strategies for improving crop comprehensive benefits via a decision-making system based on machine learning in the rice‒rape, rice‒wheat and rice‒garlic rotation systems in Southwest China[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2970-2988.
[9] Chengwei Huang, Zhijuan Ji, Qianqian Huang, Liling Peng, Wenwen Li, Dandan Wang, Zepeng Wu, Jia Zhao, Yongqi He, Zhoufei Wang. Natural variation in the cytochrome c oxidase subunit 5B OsCOX5B regulates seed vigor by altering energy production in rice[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2898-2910.
[10] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[11] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[12] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[13] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[14] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[15] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

No Suggested Reading articles found!