Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 61-71    DOI: 10.1016/j.jia.2023.07.024
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice

Shan Sun1*, Wenjun Li2*, Yanfen Fang1, Qianqian Huang1, Zhibo Huang1, Chengjing Wang1, Jia Zhao1, Yongqi He1#, Zhoufei Wang1#

1 Laboratory of Seed Science and Technology, South China Agricultural University/Guangdong Key Laboratory of Plant Molecular Breeding/State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China

2 School of Agriculture, Yunnan University, Kunming 650091, China

 Highlights 
● Rice OsSAUR33 promotes seed aging tolerance by enhancing reactive oxygen species level during seed germination.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

种子贮藏过程中的耐老化特性是作物生产的一个重要性状。然而,有关水稻生长素上调小RNA基因种子耐老化能力调控作用知之甚少本研究报道了一个水稻生长素上调小RNA基因OsSAUR33参与调控种子耐老化能力在种子萌发阶段,与未老化的种子相比,在老化种子中OsSAUR33表达被显著诱导。相应的,与野生型(WT)相比,在自然老化和人工老化条件下,OsSAUR33突变体种子活力显著下降OsSAUR33基因通过增加种子发芽过程中活性氧(ROS)水平,从而提高老化种子的活力。在种子发芽过程中,与野生型相比,在OsSAUR33突变体的老化种子中ROS积累显著延迟。此外,过氧化氢(H2O2)处理能显著提高不同水稻品种老化种子的活力。总之,本研究结果为今后改善水稻种子耐老化特性提供重要理论和技术支撑。



Abstract  

Seed aging tolerance during storage is generally an important trait for crop production, yet the role of small auxin-up RNA genes in conferring seed aging tolerance is largely unknown in rice.  In this study, one small auxin-up RNA gene, OsSAUR33, was found to be involved in the regulation of seed aging tolerance in rice.  The expression of OsSAUR33 was significantly induced in aged seeds compared with unaged seeds during the seed germination phase.  Accordingly, the disruption of OsSAUR33 significantly reduced seed vigor compared to the wild type (WT) in response to natural storage or artificial aging treatments.  The rice OsSAUR33 gene promotes the vigor of aged seeds by enhancing their reactive oxygen species (ROS) level during seed germination, and the accumulation of ROS was significantly delayed in the aged seeds of Ossaur33 mutants in comparison with WT during seed germination.  Hydrogen peroxide (H2O2) treatments promoted the vigor of aged seeds in various rice varieties.  Our results provide timely theoretical and technical insights for the trait improvement of seed aging tolerance in rice.

Keywords:  auxin-responsive gene        reactive oxygen species        rice        seed aging        seed vigor  
Received: 10 May 2023   Accepted: 27 June 2023
Fund: 

This work was supported by the Key-Area Research and Development Program of Guangdong Province, China (2022B0202060006), the National Natural Science Foundation of China (32201838, 32272157, 32172052, and 31971995), the Natural Science Foundation of Guangdong Province, China (2023A1515012052), the Project of Sanya Yazhou Bay Science and Technology City, China (SCKJ-JYRC-2022-87), and the Double First-class Discipline Promotion Project, China (2021B10564001).

About author:  Shan Sun, E-mail: ss2021@stu.scau.edu.cn; Wenjun Li, E-mail: wenjunli@ynu.edu.cn; #Correspondence Zhoufei Wang, Tel: +86-20-85280203, E-mail: wangzf@scau.edu.cn; Yongqi He, Tel: +86-20-85280203, E-mail: hyq@scau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Shan Sun, Wenjun Li, Yanfen Fang, Qianqian Huang, Zhibo Huang, Chengjing Wang, Jia Zhao, Yongqi He, Zhoufei Wang. 2025. Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice. Journal of Integrative Agriculture, 24(1): 61-71.

Bailly C. 2004. Active oxygen species and antioxidants in seed biology. Seed Science Research14, 93–107.

Bueso E, Munoz-Bertomeu J, Campos F, Brunaud V, Martinez L, Sayas E, Ballester P, Yenush L, Serrano R. 2014. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for gibberellins in seed longevity. Plant Physiology164, 999–1010.

Carranco R, Espinosa J M, Prieto-Dapena P, Almoguera C, Jordano J. 2010. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proceedings of the National Academy of Sciences of the United States of America107, 21908–21913.

Clerkx E J, Vries H B, Ruys G J, Groot S P, Koornneef M. 2003. Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiology132, 1077–1084.

Considine M J, Foyer C H. 2021. Stress effects on the reactive oxygen species-dependent regulation of plant growth and development. Journal of Experimental Botany72, 5795–5806.

Ghassemi-Golezani K, Khomari S, Dalil B, Hosseinzadeh-Mahootchy A, Chadordooz-Jeddi A. 2010. Effects of seed aging on field performance of winter oilseed rape. Journal of Food Agriculture and Environment8, 175–178.

Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry48, 909–930.

Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression, genes, promoters and regulatory factors. Plant Molecular Biology49, 373–385.

He Y, Sun S, Zhao J, Huang Z, Peng L, Huang C, Tang Z, Huang Q, Wang Z. 2023. UDP-glucosyltransferase OsUGT75A promotes submergence tolerance during rice seed germination. Nature Communications14, 2296.

Hu X L, Wang W, Li C Q, Zhang J H, Lin F, Zhang A Y, Jiang M Y. 2008. Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regulation55, 183–198.

Hou Q D, Hong Y, Wen Z, Shang C Q, Li Z C, Cai X W, Qiao G, Wen X P. 2023. Molecular characterization of the SAUR gene family in sweet cherry and functional analysis of PavSAUR55 in the process of abscission. Journal of Integrative Agriculture22, 17201739.

Jin J, Long W, Wang L, Liu X, Pan G, Xiang W, Li N, Li S. 2018. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging. Frontiers in Plant Science9, 1909.

Kumar S P J, Prasad S R, Banerjee R, Thammineni C. 2015. Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Annals of Botany116, 663–668.

Kurek K, Plitta-Michalak B, Ratajczak E. 2019. Reactive oxygen species as potential drivers of the seed aging process. Plants Basel8, 174.

Li B, Dewey C N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323.

Li W, Niu Y, Zheng Y, Wang Z. 2022. Advances in the understanding of reactive oxygen species-depenlident regulation on seed dormancy, germination, and deterioration in crops. Frontiers in Plant Science13, 826809.

Liu J, Zhou J, Xing D. 2012. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS ONE7, e33817.

Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang H Q, Luan S, Li J, He Z H. 2013. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in ArabidopsisProceedings of the National Academy of Sciences of the United States of America110, 15485–15490.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods25, 402–408.

McDonald M B. 1999. Seed deterioration: Physiology, repair and assessment. Seed Science Technology27, 177–237.

Oracz K, Karpiński S. 2016. Phytohormones signaling pathways and ROS involvement in seed germination. Frontiers in Plant Science7, 864.

Pellizzaro A, Neveu M, Lalanne D, Ly Vu B, Kanno Y, Seo M, Leprince O, Buitink J. 2020. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytologist225, 284–296.

Rajjou L, Debeaujon I. 2008. Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus-Biologies331, 796–805.

Righetti K, Vu J L, Pelletier S, Vu B L, Glaab E, Lalanne D, Pasha A, Patel R V, Provart N J, Verdier J, Leprince O, Buitink J. 2015. Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. The Plant Cell27, 2692–2708.

Sano N, Rajjou L, North H M, Debeaujon I, Marion-Poll A, Seo M. 2016. Staying alive: Molecular aspects of seed longevity. Plant and Cell Physiology57, 660–674.

Sattler S E, Gilliland L U, Magallanes-Lundback M, Pollard M, DellaPenna D. 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell16, 1419–1432.

Silva L J, Dias D C F S, Sekita M C, Finger F L. 2018. Lipid peroxidation and antioxidant enzymes of Jatropha curcas L. seeds stored at different maturity stages. Acta Scientiarum-Agronomy40, e34978.

Yamauchi M, Winn T. 1996. Rice seed vigor and seedling establishment in anaerobic soil. Crop Science36, 680–686.

Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology11, R14.

Yuan F, Chen Y, Chen X, Zhu P, Jiang S, Chen S, Xie T, Luo S, Yang Z, Zhang H, Cheng J. 2023. Preliminary identification of the changes of physiological characteristics and transcripts in rice after-ripened seeds. Seed Biology2, 5.

Yuan Z, Fan K, Wang Y, Tian L, Zhang C, Sun W, He H, Yu S. 2021. OsGRETCHENHAGEN3-2 modulates rice seed storability via accumulation of abscisic acid and protective substances. Plant Physiology186, 469–482.

Zhang P, Wu H M, Zhang F, Cao P H, Cai M Y, Song W H, Liu S J, Jiang L. 2019. Improving the storage tolerance of rice seeds by down-regulating OsLOX by RNAi. Journal of Nanjing Agricultural University42, 996–1005. (in Chinese)

Zhao J, Li W, Sun S, Peng L, Huang Z, He Y, Wang Z. 2021. The rice small auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination. International Journal of Molecular Sciences22, 1562.

Zinsmeister J, Lalanne D, Terrasson E, Chatelain E, Vandecasteele C, Vu B L, Dubois-Laurent C, Geoffriau E, Signor C L, Dalmais M, Gutbrod K, Dörmann P, Gallardo K, Bendahmane A, Buitink J, Leprince O. 2016. ABI5 is a regulator of seed maturation and longevity in legumes. The Plant Cell28, 2735–2754.

[1] Chengwei Huang, Zhijuan Ji, Qianqian Huang, Liling Peng, Wenwen Li, Dandan Wang, Zepeng Wu, Jia Zhao, Yongqi He, Zhoufei Wang. Natural variation in the cytochrome c oxidase subunit 5B OsCOX5B regulates seed vigor by altering energy production in rice[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2898-2910.
[2] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[3] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[4] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[5] Tingting Zhou, Qian Zhao, Chengzhou Li, Lu Ye, Yanfang Li, Nemat O. Keyhani, Zhen Huang. Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera[J]. >Journal of Integrative Agriculture, 2024, 23(2): 621-638.
[6] TU Ke-ling, LI Lin-juan, YANG Li-ming, WANG Jian-hua, SUN Qun. Selection for high quality pepper seeds by machine vision and classifiers[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1999-2006.
No Suggested Reading articles found!