Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2792-2806    DOI: 10.1016/j.jia.2024.01.005
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems
Peng Xu1, 2, Mengdie Jiang2, 3, Imran Khan2, Muhammad Shaaban4, Hongtao Wu5, Barthelemy Harerimana1, 6, Ronggui Hu2
1 Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
2 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China 
3 Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
4 College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
5 College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
6 University of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
水稻栽培过程中,受土壤氧化还原条件动态影响的硝化和反硝化过程在调控土壤N2O排放中起着重要作用,因此比较不同旱地-水稻种植制度对土壤N2O排放的影响是十分必要的。本研究以我国中部地区油菜-水稻(RR)和小麦-水稻(WR)两种具有代表性的轮作系统为研究对象,旨在探究旱地作物种植对调控土壤N2O排放的生物和非生物过程的影响。结果表明:油菜轮作模式第一、二季油菜季N2O平均排放量分别为1.24 ± 0.20和0.81 ± 0.11 kg N ha-1,这些排放值与WR轮作系统第一、第二季小麦季N2O排放量相当(分别为0.98 ± 0.25和0.70 ± 0.04 kg N ha-1)。这表明旱地耕作对土壤N2O排放的影响不大。在RR和WR轮作系统中,N2O通量与土壤铵态氮(NH4+)、硝态氮(NO3-)、微生物量氮(MBN)和土壤溶解有机碳(DOC)/NO3-之比呈显著正相关。此外,AOA-amoAnirK基因的分别与RR和WR模式土壤N2O排放通量呈正相关。这表明这些功能基因在促进不同旱地种植模式下微生物活动产生N2O方面可能具有不同的影响。利用结构方程模型(SEM)分析发现,对于RR模式,土壤水分、矿质氮、MBN和AOA-amoA基因对土壤N2O排放的影响贡献50%以上。而在WR轮作系统中,土壤水分、矿质氮、MBN、AOA-amoAnirK基因对N2O排放的综合影响超过70%。以上结果表明,旱地-水稻轮作模式下,土壤因子(包括土壤物理特性、有效碳氮及其比值)和功能基因对旱地土壤N2O排放具有交互作用。因此,在制定农田减排N2O措施中,因关注土壤因子和微生物特性。


Abstract  
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions, and they play a vital role in regulating soil N2O emissions in rice-based cultivation.  It is imperative to understand the influences of different upland crop planting systems on soil N2O emissions.  In this study, we focused on two representative rotation systems in Central China: rapeseed–rice (RR) and wheat–rice (WR).  We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N2O emissions.  The results revealed that during the rapeseed-cultivated seasons in the RR rotation system, the average N2O emissions were 1.24±0.20 and 0.81±0.11 kg N ha–1 for the first and second seasons, respectively.  These values were comparable to the N2O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system (0.98±0.25 and 0.70±0.04 kg N ha–1, respectively).  This suggests that upland cultivation has minimal impacts on soil N2O emissions in the two rotation systems.  Strong positive correlations were found between N2O fluxes and soil ammonium (NH4+), nitrate (NO3), microbial biomass nitrogen (MBN), and the ratio of soil dissolved organic carbon (DOC) to NO3 in both RR and WR rotation systems.  Moreover, the presence of the AOA-amoA and nirK genes were positively associated with soil N2O fluxes in the RR and WR systems, respectively.  This implies that these genes may have different potential roles in facilitating microbial N2O production in various upland plantation models.  By using a structural equation model, we found that soil moisture, mineral N, MBN, and the AOA-amoA gene accounted for over 50% of the effects on N2O emissions in the RR rotation system.  In the WR rotation system, soil moisture, mineral N, MBN, and the AOA-amoA and nirK genes had a combined impact of over 70% on N2O emissions.  These findings demonstrate the interactive effects of functional genes and soil factors, including soil physical characteristics, available carbon and nitrogen, and their ratio, on soil N2O emissions during upland cultivation seasons under rice-upland rotations.


Keywords:  upland-rice cultivation       N2O emission        regulatory factors        functional genes  
Received: 15 August 2023   Accepted: 20 December 2023
About author:  Peng Xu, E-mail: xupeng@imde.ac.cn; #Correspondence Ronggui Hu, E-mail: rghu@mail.hzau.edu.cn

Cite this article: 

Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. 2024. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems. Journal of Integrative Agriculture, 23(8): 2792-2806.

Cai Z C, Xing G X, Yan X Y, Xu H, Tsuruta H, Yagi K, Minami K. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil196, 7–14.

Carlson K M, Gerber J S, Mueller N D, Herrero M, MacDonald G K, Brauman K, Christine S O, Havlík P, Johnson J, Saatchi S S, West P C. 2017. Greenhouse gas emissions intensity of global croplands. Nature Climate Change7, 63–68.

Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z. 2008. Ammonia-oxidizing archaea: Important players in paddy rhizosphere soil? Environmental Microbiology10, 1978–1987.

Davidson E A. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience2, 659–662.

Drury C F, Reynolds W D, Yang X M, McLaughlin N B, Calder W C, Phillips L A. 2021. Diverse rotations impact microbial processes, seasonality and overall N2O emissions from soils. Soil Science Society of America Journal85, 1448–1464.

FAO (Food and Agriculture Organization of the United Nations). 2022. Statistical Database of the Food and Agriculture Organization of the United Nations (FAOSTAT). FAO, Rome, Italy.

Firestone M K, Davidson E A. 1989. Microbiological basis of NO and N2O production and consumption in soil. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. John Wiley and Sons, New York.

Hu H W, Chen D, He J Z. 2015. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews39, 729–749.

Hu H W, Trivedi P, He J Z, Singh B K. 2017. Microbial nitrous oxide emissions in dryland ecosystems: Mechanisms, microbiome, and mitigation. Environmental Microbiology19, 4808–4828.

IPCC (Intergovernmental Panel on Climate Change). 2023. Climate change 2023. The synthesis report for the sixth assessment report of the intergovernmental panel on climate change, intergovernmental panel on climate change, interlaken, Switzerland. [2023-3-19]. https://www.ipcc.ch/report/sixth-assessment-report-cycle/

Jiang M D, Xu P, Zhou W, Shaaban M, Zhao J, Ren T, Lu J W, Hu R G. 2020. Prior nitrogen fertilization regulates CH4 emissions from rice cultivation by increasing soil carbon storage in a rapeseed–rice rotation. Applied Soil Ecology155, 103633.

Khalil K, Mary B, Renault P. 2004. Nitrous oxide production by nitrifcation and denitrifcation in soil aggregates as affected by O2 concentration. Soil Biology and Biochemistry36, 687–699.

Kim G W, Kim P J, Khan M I, Lee S J. 2021. Effect of rice planting on nitrous oxide (N2O) emission under different levels of nitrogen fertilization. Agronomy11, 217.

Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M. 2010. Biogeochemistry of paddy soils. Geoderma157, 1–14.

Kowalchuk G A, Stephen J R. 2001. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology55, 485–529.

Kritee K, Nair D, Zavala-Araiza D, Proville J, Rudek J, Adhya T K, Loecke T, Esteves T, Balireddygari S, Dava O, Ram K, Abhilash S R, Madasamy M, Dokka R V, Anandaraj D, Athiyaman D, Reddy M, Ahuja R, Hamburg S P. 2018. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proceedings of the National Academy of Sciences of the United States of America115, 9720–9725.

Lan Z M, Chen C R, Rashti M R. 2017. Stoichiometric ratio of dissolved organic carbon to nitrate regulates nitrous oxide emission from the biochar-amended soils. Science of the Total Environment576, 559–571.

Lenhart K, Behrendt T, Greiner S, Steinkamp J, Well R, Giesemann A, Keppler F. 2019. Nitrous oxide effluxes from plants as a potentially important source to the atmosphere. New Phytologist221, 1398–1408.

Li H, Meng J, Liu Z Q, Lan Y, Yang X, Huang Y W, He T Y, Chen W F. 2021. Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study. Science of the Total Environment787, 147591.

Liao B, Wu X, Yu Y F, Luo S Y, Hu R G, Lv G A. 2020. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH4 and N2O emissions in rice cultivation. Science of the Total Environment698, 134212.

Liu G Y, Zheng J L, Chen T T, Chen X D, Cheng W G, Sun Y D, Lærke P E, Chen Y L, Siddique K H M, Chi D C, Chen J. 2022. Zeolite mitigates N2O emissions in paddy fields under alternate wetting and drying irrigation. AgricultureEcosystems & Environment339, 108145.

Ma W K, Bedard-Haughn A, Siciliano S D, Farrell R E. 2008. Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils. Soil Biology and Biochemistry40, 1114–1123.

Macdonald C A, Clark I M, Hirsch P R, Zhao F J, McGrath S P. 2011. Development of a real-time PCR assay for detection and quantification of Rhizobium leguminosarum bacteria and discrimination between different biovars in zinc-contaminated soil. Applied Environmental Microbiology77, 4626–4633.

Meijide A, Díez J A, Sánchez-Martín L, Vallejo A. 2007. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. AgricultureEcosystems & Environment121, 383–394.

Pan H, Zhuge Y P. 2023. N2O emissions from soils under short-term straw return in a wheat–corn rotation system are associated with changes in the abundance of functional microbes. AgricultureEcosystems & Environment341, 108217.

Qin H L, Tang Y F, Shen J L, Wang C, Chen C L, Yang J, Liu Y, Chen X B, Li Y, Hou H J. 2018. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biology and Fertility of Soils54, 885–895.

Ruser R, Flessa H, Schilling R, Beese F, Munch J C. 2001. Effect of crop-specific field management and N fertilization on N2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems59, 177–191.

Sánchez-Martín L, Arce A, Benito A. 2008. Influence of drip and furrow irrigation systems on nitrogen oxide emissions from a horticultural crop. Soil Biology and Biochemistry40, 1698–1706.

Sehy U, Ruser R, Munch J C. 2003. Nitrous oxide fluxes from maize fields: Relationship to yield, site-specific fertilization, and soil conditions. AgricultureEcosystems & Environment99, 97–111.

Shaaban M, Hu R G, Wu Y P, Younas A, Xu X Y, Sun Z, Jiang Y B, Lin S. 2018. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environmental Pollution255, 113237.

Shaaban M, Peng Q A, Bashir S, Wu Y P, Younas A, Xu X Y, Rashti M R, Abid M, Núñez-Delgado A, Horwath W R, Jiang Y B, Lin S, Hu R G. 2019. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil. Journal of Environmental Management250, 109535.

Song K F, Zhang G B, Yu H Y, Xu H, Lv S H, Ma J. 2021. Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China. European Journal of Soil Science72, 1478–1491.

Tian H Q, Xu R T, Canadell J G, Thompson R L, Winiwarter W, Suntharalingam P, Davidson E A, Ciais P, Jackson R B, Janssens-Maenhout G, Prather M J, Regnier P, Pan N Q, Pan S F, Peters G P, Hao S, Tubiello F N, Zaehle S, Zhou F, Almut A, et al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.

Tokutomi T, Shibayama C, Soda S, Ike M. 2010. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Research44, 4195–4203.

Wang K, Zheng X, Pihlatie M, Vesala T, Liu C, Haapanala S, Mammarella I, Rannik Ü, Liu H. 2013. Comparison between static chamber and tunable diode laserbased eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology171, 9–19.

Wei W, Isobe K, Shiratori Y, Yano M, Toyoda S, Koba K, Yoshida N, Shen H, Senoo K. 2021. Revisiting the involvement of ammonia oxidizers and denitrifiers in nitrous oxide emission from cropland soils. Environmental Pollution287, 117494.

Wu L, Tang S, He D, Wu X, Shaaban M, Wang M, Zhao J, Khan I, Zheng X, Hu R. 2017. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Science of the Total Environment583, 190–201.

Xu P, Jiang M D, Imran K, Muhammad S, Zhao J S, Yang T W, Hu R G. 2023. The effect of upland crop planting on field N2O emission from rice-growing seasons: A case study comparing rice–wheat and rice–rapeseed rotations. AgricultureEcosystems & Environment347, 108365.

Xu P, Jiang M D, Imran K, Zhao J S, Yang T W, Tu J M, Hu R G. 2022a. Available nitrogen and ammonia-oxidizing archaea in soil regulated N2O emissions regardless of rice planting under a double rice cropping-fallow system. AgricultureEcosystems & Environment340, 108166.

Xu P, Jiang M D, Jiang Y B, Imran K, Zhou W, Wu H T, W X, Muhammad S, Lu J W, Hu R G. 2022b. Prior nitrogen fertilization stimulated N2O emission from rice cultivation season under a rapeseed–rice production system. Plant and Soil471, 1–12.

Xu X, Ran Y, Li Y, Zhang Q, Liu Y, Pan H, Guan X, Li J, Shi J, Dong L. 2016. Warmer and drier conditions alter the nitrifier and denitrifier communities and reduce N2O emissions in fertilized vegetable soils. AgricultureEcosystems & Environment231, 133–142.

Yang L Q, Zhang X J, Ju X T. 2017. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Scientific Reports7, 43283.

Yang Y J, Liu H X, Lv J L. 2022. Response of N2O emission and denitrification genes to different inorganic and organic amendments. Scientific Reports12, 3940.

Zhang M, Chen Z Z, Li Q L, Fan C H, Xiong Z Q. 2016. Quantitative relationship between nitrous oxide emissions and nitrogen application rate for a typical intensive vegetable cropping system in southeastern China. Clean–Soil Air Water44, 1725–1732.

Zheng X, Wang S, Xu X, Deng B L, Liu X J, Hu X F, Deng W P, Zhang W Y, Jiang J, Zhang L. 2022. Soil N2O emissions increased by litter removal but decreased by phosphorus additions. Nutrient Cycling in Agroecosystems123, 49–59.

Zheng X H, Mei B L, Wang Y H, Xie B H, Wang Y S, Dong H B, Xu H, Chen G X, Cai Z C, Yue J. 2008. Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant and Soil311, 211–234.

Zhou M H, Zhu B, Butterbach-Bahl K, Wang X G, Zheng X H. 2014. Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in southwest China. Plant and Soil383, 401–414.

Zhou W, Jones D L, Hu R G, Clark I M, Chadwick D R. 2020. Crop residue carbon-to-nitrogen ratio regulates denitrifier N2O production post flooding. Biology and Fertility of Soils56, 825–838.

Zhou W, Lin S, Wu L, Zhao J S, Wang M L, Zhu B, Mo Y L, Hu R G, Chadwick D, Muhammad S. 2017. Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice–wheat rotation. Atmospheric Environment170, 269–278.

Zou J, Huang Y, Sun W, Zheng X. 2005. Contribution of plants to N2O emissions in soil–winter wheat ecosystem: Pot and field experiments. Plant and Soil269, 205–211.

Zou W, Lang M, Zhang L, Liu B, Chen X. 2022. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil. Science of the Total Environment811, 151402.

Zou J, Lu Y, Huang Y. 2010. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980–2000. Environmental Pollution158, 631–635.

No related articles found!
No Suggested Reading articles found!