Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (12): 3983-3997    DOI: 10.1016/j.jia.2024.02.002
Special Issue: 水稻耕作栽培Rice Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimizing nitrogen management can improve stem lodging resistance and stabilize the grain yield of japonica rice in rice–crayfish coculture systems
Qiang Xu1, 2, 3*, Jingyong Li1, 2, 3*, Hui Gao1, 2, 3#, Xinyi Yang4, Zhi Dou1, 2, 3, Xiaochun Yuan5, Weiyan Gao5, Hongcheng Zhang1, 2, 3

1 Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Agricultural College, Yangzhou University, Yangzhou 225009, China

2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China

3 Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China

4 Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

5 Jiangsu Xuyi Crayfish Industry Development Co., Ltd., Huai’an 211700, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
氮是影响水稻产量及倒伏性状的主要因素。前人主要研究了水稻单作模式下氮肥管理对水稻倒伏特性的影响,鲜有对稻虾共作模式进行研究。本研究假设稻虾共作模式会增加水稻倒伏风险,而优化氮肥管理可以在提高该模式下水稻抗倒能力的同时保证水稻稳产。在2021-2022年,通过双因素(稻作模式和氮肥管理)田间试验验证本研究提出的假设。稻作模式包括水稻单作和稻虾共作,氮肥管理包括不施氮、常规施氮和优化施氮处理。对不同处理的水稻产量和抗倒伏指标(形态、力学、理化、解剖结构指标及基因表达水平)均进行了比较分析。结果表明:在同一施氮量下,与水稻单作相比,稻虾共作的水稻产量两年平均减少了11.1%–24.4%,茎秆倒伏指数增加了19.6%–45.6%。稻虾共作模式下优化施氮处理的水稻株高、穗颈节高、重心高、弯曲应力和倒伏指数分别比常规施氮处理降低了4.0–4.8%、5.2–7.8%、0.5–4.5%、5.5–10.5%和1.8–19.5%,而茎粗、茎壁厚、折断弯矩、非结构性碳水化合物和结构性碳水化合物的含量则分别增加了0.8–4.9%、2.2–53.1%、13.5–19.2%、2.2–24.7%和31.3–87.2%。此外,优化施氮增加了基部第二节间厚壁组织和薄壁组织及维管束的面积,上调了合成木质素和纤维素关键基因的相对表达量,提高了水稻茎秆基部节间抗倒伏能力。稻虾共作模式下优化施氮处理水稻倒伏指数显著(P<0.05)低于常规施氮处理,降幅为1.8–19.5%,而水稻产量平均为8570kg·hm-2,达到稳产水平,不会对粮食安全造成影响。本研究全面分析了优化施氮对两种稻作模式下水稻抗倒特性的差异,该研究结果有助于发展稻虾田更高效的氮肥管理模式,从而合理降低氮肥投入。


Abstract  
Nitrogen (N) significantly affects rice yield and lodging resistance.  Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture (RM); however, few studies have performed such investigations in rice–crayfish coculture (RC).  We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.  We conducted a two-factor (rice farming mode and N management practice) field experiment from 2021 to 2022 to test our hypothesis.  The rice farming modes included RM and RC, and the N management practices included no nitrogen fertilizer, conventional N application, and optimized N treatment.  The rice yield and lodging resistance characteristics, such as morphology, mechanical and chemical characteristics, anatomic structure, and gene expression levels, were analyzed and compared among the treatments.  Under the same N application practice, RC decreased the rice yield by 11.1–24.4% and increased the lodging index by 19.6–45.6% compared with the values yielded in RM.  In RC, optimized N application decreased the plant height, panicle neck node height, center of gravity height, bending stress, and lodging index by 4.0–4.8%, 5.2–7.8%, 0.5–4.5%, 5.5–10.5%, and 1.8–19.5%, respectively, compared with those in the conventional N application practice.  Furthermore, it increased the culm diameter, culm wall thickness, breaking strength, and non-structural and structural carbohydrate content by 0.8–4.9%, 2.2–53.1%, 13.5–19.2%, 2.2–24.7%, and 31.3–87.2%, respectively.  Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.  Furthermore, optimized N application upregulated genes involved in lignin and cellulose synthesis, thereby promoting lower internodes on the rice stem and enhancing lodging resistance.  Optimized N application in RC significantly reduced the lodging index by 1.8–19.5% and stabilized the rice yield (>8,570 kg ha–1 on average).  This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.  The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.

Keywords:  rice       lodging resistance        nitrogen regulation        anatomical structure        rice-crayfish coculture  
Received: 12 July 2023   Accepted: 07 December 2023
Fund: 
The work was supported by the National Natural Science Foundation of China (32301961), the Natural Science Foundation of Jiangsu Province, China (BK20210791), the General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province, China (2023SJYB2057), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the Qinglan Project of Yangzhou University, China, and the Lv Yang Jin Feng Talent Plan of Yangzhou City, China (YZLYJF2020PHD100). 
About author:  Qiang Xu, Tel: +86-514-87974556, E-mail: qiangxu@yzu.edu.cn; Jingyong Li, Tel: +86-514-87974556, E-mail: 15277339063@163.com; #Correspondence Hui Gao, Tel: +86-514-87974556, E-mail: gaohui@yzu.edu.cn * These authors contributed equally to this study. * These authors contributed equally to this study.

Cite this article: 

Qiang Xu, Jingyong Li, Hui Gao, Xinyi Yang, Zhi Dou, Xiaochun Yuan, Weiyan Gao, Hongcheng Zhang. 2024. Optimizing nitrogen management can improve stem lodging resistance and stabilize the grain yield of japonica rice in rice–crayfish coculture systems. Journal of Integrative Agriculture, 23(12): 3983-3997.

Cui J, Liu H, Wang H, Wu S, Bashir M A, Reis S, Sun Q, Xu J, Gu B. 2023. Rice-animal co-culture systems benefit global sustainable intensification. Earth’s Future11, e2022EF002984.

Duy P Q, Abe A, Hirano M, Sagawa S, Kuroda E. 2004. Analysis of lodging-resistant characteristics of different rice genotypes grown under the standard and nitrogen-free basal dressing accompanied with sparse planting density practices. Plant Production Science7, 243–251.

Gao H, Dai L, Xu Q, Gao P, Dou Z. 2023. Transforming agrifood systems in a win–win for health and environment: Evidence from organic rice–duck coculture. Journal of the Science of Food and Agriculture103, 968–975.

Gao H, Dou Z, Chen L, Lu Y, Sun D, Xu Q, Sun R, Chen X. 2022. Effects of semi-deep water irrigation on hybrid indica rice lodging resistance. Frontiers in Plant Science13, 1038129.

Guo L, Zhao L, Ye J, Ji Z, Tang J J, Bai K, Zheng S, Hu L, Chen X. 2022. Using aquatic animals as partners to increase yield and maintain soil nitrogen in the paddy ecosystems. eLife11, e73869.

Hattori Y, Nagai K, Furukawa S, Song X J, Kawano R, Sakakibara H, Wu J Z, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature460, 1026–1030.

Hong W, Chen Y, Huang S, Li Y, Wang Z, Tang X, Pan S, Tian H, Mo Z. 2022. Optimization of nitrogen-silicon (N-Si) fertilization for grain yield and lodging resistance of early-season indica fragrant rice under different planting methods. European Journal of Agronomy136, 126508.

Hu S, Yang Y, Tian C, He F, Wang Y, Wang Y, Yang L. 2023. Physicochemical characteristics of lodging susceptibility of rice cultivars in response to ozone exposure. AgricultureEcosystems & Environment344, 108313.

Huang M, Tao Z, Lei T, Cao F, Chen J, Yin X, Zou Y, Liang T. 2021. Improving lodging resistance while maintaining high grain yield by promoting pre-heading growth in rice. Field Crops Research270, 108212.

Kashiwagi T, Madoka Y, Hirotsu N, Ishimaru K. 2006. Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiology and Biochemistry44, 152–157.

Li G, Hu Q, Shi Y, Cui K, Nie L, Huang J, Peng S. 2018. Low nitrogen application enhances starch-metabolizing enzyme activity and improves accumulation and translocation of non-structural carbohydrates in rice stems. Frontiers in Plant Science9, 1128.

Li Q, Xu L, Xu L, Qian Y, Jiao Y, Bi Y, Zhang T, Zhang W, Liu Y. 2018. Influence of consecutive integrated rice–crayfish culture on phosphorus fertility of paddy soils. Land Degradation & Development29, 3413–3422.

Liao P, Bell S M, Chen L, Huang S, Wang H, Miao J, Qi Y, Sun Y, Liao B, Zeng Y, Wei H, Gao H, Dai Q, Zhang H. 2023. Improving rice grain yield and reducing lodging risk simultaneously: A meta-analysis. European Journal of Agronomy143, 126709.

Mahbub M A A, Khanam M, Rahman M S, Hossain M A, Gomosta A R. 2006. Determination of lodging characters of some BRRI recommended rice varieties at three nitrogen levels during wet season in Bangladesh. Bangladesh Journal of Botany35, 117–124.

Pan J, Zhao J, Liu Y, Huang N, Tian K, Shah F, Liang K, Zhong X, Liu B. 2019. Optimized nitrogen management enhances lodging resistance of rice and its morpho-anatomical, mechanical, and molecular mechanisms. Scientific Reports9, 20274.

Rajkumara S. 2008. Lodging in cereals - A review. Agricultural Reviews29, 55–60.

Sathoria P, Roy B. 2022. Sustainable food production through integrated rice–fish farming in India: A brief review. Renewable Agriculture and Food Systems37, 527–535.

Sauter M, Kende H. 1992. Gibberellin induced growth and regulation of the cell division cycle in deepwater rice. Planta188, 362–368.

SC/T 1135.1–2017. 2017. Technical specification for integrated farming of rice and aquaculture animal - Part 1: General principle. Ministry of Agriculture and Rural Affairs of the People's Republic of China. pp. 1–7. (in Chinese)

Setter T, Laureles E, Mazaredo A. 1997. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crops Research49, 95–106.

Shah A N, Tanveer M, Rehman A U, Anjum S A, Iqbal J, Ahmad R. 2017. Lodging stress in cereal-effects and management: An overview. Environmental Science and Pollution Research International24, 5222–5237.

Shrestha S, Laza M R C, Mendez K V, Bhosale S, Dingkuhn M. 2020. The blaster: A methodology to induce rice lodging at plot scale to study lodging resistance. Field Crops Research245, 107663.

Si G. 2019. Study on change characteristics of soil fertility in paddy fields under long-term integrated rice–crayfish model. Ph D thesis, Huazhong Agricultural University, Wuhan, China. (in Chinese)

Sun G, Sun M, Du L, Zhang Z, Wang Z, Zhang G, Nie S, Xu H, Wang H. 2021. Ecological rice-cropping systems mitigate global warming - A meta-analysis. Science of the Total Environment789, 147900.

Sun X, Wang H, Wang F, Zhao Y, Wang H, Zhu J, Wei S, Chen H. 2023. Effects of different fertilization patterns on the dietary composition of Procambarus clarkii in a rice–crayfish coculture system. Aquaculture Reports33, 101801.

Wang A, Hao X, Chen W, Luo X, Huang Q. 2023. Rice–crayfish co-culture increases microbial necromass’ contribution to the soil nitrogen pool. Environmental Research216, 114708.

Wang Q, Yu K, Zhang H. 2022. Controlled-release fertilizer improves rice matter accumulation characteristics and yield in rice–crayfish coculture. Agriculture12, 1674.

Wang X Y, Xu L, Li X X, Yang G D, Wang F, Peng S B. 2022. Grain yield and lodging-related traits of ultrashort duration varieties for direct-seeded and double-season rice in Central China. Journal of Integrative Agriculture21, 2888–2899.

Wang Y, Ren T, Lu J W, Ming R, Li P F, Hussain S, Cong R H, Li X K. 2016. Heterogeneity in rice tillers yield associated with tillers formation and nitrogen fertilizer. Agronomy Journal108, 1717–1725.

Wu D H, Chen C T, Yang M D, Wu Y C, Lin C Y, Lai M H, Yang C Y. 2022. Controlling the lodging risk of rice based on a plant height dynamic model. Botanical Studies63, 25.

Wu M, Jiang H, Wei Z, Li W, Gao K, Wang D, Wei X, Tian P, Cui J, Di Y, Wu Z, Yang M. 2023. Influence of nitrogen application rate on stem lodging resistance rice under dry cultivation. Agronomy13, 426.

Wu Y, Li Y, Niu L, Zhang W, Wang L, Zhang H. 2022. Nutrient status of integrated rice–crayfish system impacts the microbial nitrogen-transformation processes in paddy fields and rice yields. Science of the Total Environment836, 155706.

Xu Q, Dai L, Shang Z, Zhou Y, Li J, Dou Z, Yuan X, Gao H. 2023. Application of controlled-release urea to maintain rice yield and mitigate greenhouse gas emissions of rice–crayfish coculture field. AgricultureEcosystems & Environment344, 108312.

Xu Q, Liu T, Guo H, Dou Z, Gao H, Zhang H. 2021. Conversion from rice–wheat rotation to rice–crayfish coculture increases net ecosystem service values in Hung-tse Lake area, east China. Journal of Cleaner Production319, 128883.

Xu Q, Peng X, Guo H, Che Y, Dou Z, Xing Z, Hou J, Styles D, Gao H, Zhang H. 2022. Rice–crayfish coculture delivers more nutrition at a lower environmental cost. Sustainable Production and Consumption29, 14–24.

Yagioka A, Hayashi S, Kimiwada K, Kondo M. 2022. Kitagenki, a high-yielding rice variety, exhibits a high yield potential under optimum crop management practices. European Journal of Agronomy140, 126606.

Yuan P L, Wang J P, Guo C, Guo Z Y, Guo Y, Cao C G. 2022. Sustainability of the rice–crayfish farming model in waterlogged land: A case study in Qianjiang County, Hubei Province, China. Journal of Integrative Agriculture21, 1203–1214.

Yuan S, Linquist B A, Wilson L T, Cassman K G, Stuart A M, Pede V, Miro B, Saito K, Agustiani N, Aristya V E, Krisnadi L Y, Zanon A J, Heinemann A B, Carracelas G, Subash N, Brahmanand P S, Li T, Peng S, Grassini P. 2021. Sustainable intensification for a larger global rice bowl. Nature Communications12, 7163.

Zhang J, Li G H, Huang Q Y, Liu Z H, Ding C Q, Tang S, Chen L, Wang S H, Ding Y F, Zhang W J. 2017. Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population. Crop Journal5, 478–487.

Zhang W, Wu L, Ding Y, Yao X, Wu X, Weng F, Li G, Liu Z, Tang S, Ding C, Wang S. 2017. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Journal of Plant Research130, 859–871.

Zhang W, Wu L, Wu X, Ding Y, Li G, Li J, Weng F, Liu Z, Tang S, Ding C, Wang S. 2016. Lodging resistance of japonica rice (Oryza sativa L.): Morphological and anatomical traits due to top-dressing nitrogen application rates. Rice9, 31.

Zhang W, Yao X, Duan X, Liu Q, Tang Y, Li J, Li G, Ding Y, Liu Z. 2021. Foliar application uniconazole enhanced lodging resistance of hybrid indica rice by altering basal stem quality under poor light stress. Agronomy Journal114, 524–544.

Zhang W J, Li G H, Yang Y M, Li Q, Zhang J, Liu J Y, Wang S, Tang S, Ding Y F. 2014. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. Journal of Integrative Agriculture13, 63–72.

Zhang W J, Wu L M, Ding Y F, Weng F, Wu X R, Li G H, Liu Z H, Tang S, Ding C Q, Wang S H. 2016. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. Journal of Integrative Agriculture15, 992–1004.

Zhou Q, Yuan R, Zhang W Y, Gu J F, Liu L J, Zhang H, Wang Z Q, Yang J C. 2023. Grain yield, nitrogen use efficiency and physiological performance of indica/japonica hybrid rice in response to various nitrogen rates. Journal of Integrative Agriculture22, 63–79.

Zhou Y. 2023. Study on the field distribution characteristics of crayfish and environmental effects under the rice crayfish integrative system. Ph D thesis, Yangtze University, Jingzhou, China. (in Chinese)

Zhu C, Ziska L H, Sakai H, Zhu J, Hasegawa T. 2013. Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy46, 20–24.

[1] Shan Sun, Wenjun Li, Yanfen Fang, Qianqian Huang, Zhibo Huang, Chengjing Wang, Jia Zhao, Yongqi He, Zhoufei Wang. Small auxin-up RNA gene OsSAUR33 promotes seed aging tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(1): 61-71.
[2] Yufei Ling, Mengzhu Liu, Yuan Feng, Zhipeng Xing, Hui Gao, Haiyan Wei, Qun Hu, Hongcheng Zhang. Effects of increased seeding density on seedling characteristics, mechanical transplantation quality, and yields of rice with crop straw boards for seedling cultivation[J]. >Journal of Integrative Agriculture, 2025, 24(1): 101-113.
[3] Yuxin Liu, Chi Shen, Xiaoyu Wang, Chaogeng Xiao, Zisheng Luo, Guochang Sun, Wenjing Lu, Rungang Tian, Lijia Dong, Xueyuan Han. Mitigating ethyl carbamate production in Chinese rice wine: Role of raspberry extract[J]. >Journal of Integrative Agriculture, 2025, 24(1): 353-365.
[4] Zijuan Ding, Ren Hu, Yuxian Cao, Jintao Li, Dakang Xiao, Jun Hou, Xuexia Wang. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3186-3199.
[5] Delei Kong, Xianduo Zhang, Qidong Yu, Yaguo Jin, Peikun Jiang, Shuang Wu, Shuwei Liu, Jianwen Zou. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3159-3173.
[6] Xue Shen, Quanyu Yang, Rongjun Ao, Shengsheng Gong. Rural labor migration and farmers’ arrangements of rice production systems in Central China: Insight from the intergenerational division of labor[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3200-3214.
[7] Xinrui Li, Xiafei Li, Tao Liu, Huilai Yin, Hao Fu, Yongheng Luo, Yanfu Bai, Hongkun Yang, Zhiyuan Yang, Yongjian Sun, Jun Ma, Zongkui Chen. Strategies for improving crop comprehensive benefits via a decision-making system based on machine learning in the rice‒rape, rice‒wheat and rice‒garlic rotation systems in Southwest China[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2970-2988.
[8] Chengwei Huang, Zhijuan Ji, Qianqian Huang, Liling Peng, Wenwen Li, Dandan Wang, Zepeng Wu, Jia Zhao, Yongqi He, Zhoufei Wang. Natural variation in the cytochrome c oxidase subunit 5B OsCOX5B regulates seed vigor by altering energy production in rice[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2898-2910.
[9] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[10] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[11] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[12] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[13] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[14] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[15] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

No Suggested Reading articles found!