Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (8): 2372-2383    DOI: 10.1016/S2095-3119(21)63770-X
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella
WANG Jie*, ZHANG Qi*, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

本研究比较H/L选育群体和非选育群体的基因组数据和沙门氏菌感染后的脾脏转录组数据,旨在鉴定H/L选育过程中参与脾脏抗菌能力的关键基因。在选择系第10代,从H/L选育系和对照系分别选取41只和31只个体采集外周血样本提取DNA,并基于55K SNP芯片进行基因分型进行选择信号分析;分别选取选育系和对照系群体于7日龄进行鼠伤寒沙门氏菌(ST)感染试验,感染后3d测定肝组织载菌量和血液溶菌酶含量,同时采集脾脏组织(N=9)进行转录组分析;结合选择信号和脾脏转录组结果共同鉴定脾脏中参与沙门氏菌抵抗的候选基因。结果表明,与对照系群体相比,H/L选育群体对鼠伤寒沙门氏菌的抗性更强(P<0.05)。在选育系和对照系之间,鉴定的分化基因主要参与TGF-β信号通路、FoxO信号通路和沙门氏菌感染通路。对所有鉴定得到的脾脏差异表达基因(DEGs)的分析结果表明,沙门氏菌感染途径涉及的G蛋白偶联受体(GPCR)和胰岛素样生长因子(IGF-I)信号通路被显著富集(p<0.01)。基于DEGs和Fst(Fixation index)的综合分析鉴定了参与沙门氏菌感染途径的候选基因,如GPR39NTRK2ANXA1。广泛的基因组变化显示了在鸡群中免疫反应的多基因遗传基础。许多与免疫防御功能相关的基因在H/L选育和对照系中差异表达,选育系群体对沙门氏菌表现出更强的抗性。该研究确定了在用ST攻击后易感鸡和抗性鸡中差异表达的基因和通路,以更好地了解宿主对ST感染的免疫抗性。本研究利用动物模型(H/L定向选育系和对照系)的基因组数据和脾脏转录组数据进行了系统性的研究,解析了H/L定向选育后脾脏影响沙门氏菌抗性的分子机制。


Salmonella is one of the most common food-borne pathogens and its resistance in chicken can be improved through genetic selection.  The heterophils/lymphocytes (H/L) ratio in the blood reflects the immune system status of chicken.  We compared the genome data and spleen transcriptomes between the H/L ratio-selected and non-selected chickens, after Salmonella infection, aiming to identify the key genes participating in the antibacterial activity in the spleen.  The results revealed that, the selected population had stronger (P<0.05) liver resistance to Salmonella typhimurium (ST) than the non-selected population.  In the selected and non-selected lines, the identified differentiation genes encode proteins involved in biological processes or metabolic pathways that included the TGF-beta signaling pathway, FoxO signaling pathway, and Salmonella infection pathway.  The results of the analysis of all identified differentially expressed genes (DEGs) of spleen revealed that the G protein-coupled receptor (GPCR) and insulin-like growth factor (IGF-I) signaling pathways were involved in the Salmonella infection pathway.  Integrated analysis of DEGs and FST (fixation index), identified candidate genes involved in Salmonella infection pathway, such as GPR39, NTRK2, and ANXA1.  The extensive genomic changes highlight the polygenic genetic of the immune response in these chicken populations.  Numerous genes related to the immune performance are differentially expressed in the selected and non-selected lines and the selected lines has a higher resistance to Salmonella. 

Keywords:  heterophils/lymphocytes        selective sweep        RNA-seq        Salmonella typhimurium        disease-resistance  
Received: 08 February 2021   Accepted: 14 July 2021
Fund: This research was supported by the grants from the National Natural Science Foundation of China (32072708), the National Key R&D Program of China (2018YFE0128000), and the Major Scientific Research Projects of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202005).
About author:  WANG Jie, E-mail:; ZHANG Qi, E-mail:; Correspondence ZHAO Gui-ping, Tel: +86-10-62816018, E-mail: * These authors contributed equally to this study.

Cite this article: 

WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping. 2022. Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella. Journal of Integrative Agriculture, 21(8): 2372-2383.

Al-Ejeh F, Simpson P T, Sanus J M, Klein K, Kalimutho M, Shi W, Miranda M, Kutasovic J, Raghavendra A, Madore J, Reid L, Krause L, Chenevix-Trench G, Lakhani S R, Khanna K K. 2014. Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast. Oncogenesis, 3, e100.
Al-Murrani W K, Al-Rawi I K, Raof N M. 2002. Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science, 43, 501–507.
Amroudie M N, Ataei F. 2019. Experimental and theoretical study of IBC domain from human IP3R2; molecular cloning, bacterial expression and protein purification. International Journal of Biological Macromolecules, 124, 1321–1327.
Anders S, Pyl P T, Huber W. 2015. HTSeq - A Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169.
Bai F, Zhang P, Fu Y, Chen H, Zhang M, Huang Q, Li D, Li B, Wu K. 2020. Targeting ANXA1 abrogates Treg-mediated immune suppression in triple-negative breast cancer. Journal for Immunotherapy of Cancer, 8, e000169.
Barrow P A, Bumstead N, Marston K, Lovell M A, Wigley P. 2004. Faecal shedding and intestinal colonization of Salmonella enterica in in-bred chickens: The effect of host-genetic background. Epidemiology and Infection, 132, 117–126.
Barrow P A, Jones M A, Smith A L, Wigley P. 2012. The long view: Salmonella – the last forty years. Avian Pathology, 41, 413–420.
Beaumont C, Chapuis H, Protais J, Sellier N, Menanteau P, Fravalo P, Velge P. 2009. Resistance to Salmonella carrier state: Selection may be efficient but response depends on animal’s age. Genetics Research, 91, 161–169.
Beaumont C, Protais J, Guillot JF, Colin P, Proux K, Millet N, Pardon P. 1999. Genetic resistance to mortality of day-old chicks and carrier-state of hens after inoculation with Salmonella enteritidis. Avian Pathology, 28, 131–135.
Berthelot F, Beaumont C, Mompart F, Girard-Santosuosso O, Pardon P, Duchet-Suchaux M. 1998. Estimated heritability of the resistance to cecal carrier state of Salmonella enteritidis in chickens. Poultry Science, 77, 797–801.
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.
Calenge F, Legarra A, Beaumont C. 2011. Genomic selection for carrier-state resistance in chicken commercial lines. Bmc Proceedings, 5, 1–3.
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England), 34, i884–i890.
Davis A K. 2005. Effect of handling time and repeated sampling on avian white blood cell counts. Journal of Field Ornithology, 76, 334–338.
Dhabhar F S, McEwen B S. 1997. Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: A potential role for leukocyte trafficking. Brain Behavior and Immunity, 11, 286–306.
Dhabhar F S, Miller A H, McEwen B S, Spencer R L. 1996. Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. Journal of Immunology, 157, 1638–1644.
Doyle M P, Erickson M C. 2006. Reducing the carriage of foodborne pathogens in livestock and poultry. Poultry Science, 85, 960–973.
Escobar S C, Perez Y U, Escobar P C, de Gómez M S. 2012. P01-11 IGF-I acts as a potent chemotactic factor for spleen lymphocytes. Growth Hormone & IGF Research, 22, S36.
Gast R K, Holt P S. 1998. Persistence of Salmonella enteritidis from one day of age until maturity in experimentally infected layer chickens. Poultry Science, 77, 1759–1762.
Geiger T L, Abt M C, Gasteiger G, Firth M A, O’Connor M H, Geary C D, O’Sullivan T E, van den Brink M R, Pamer E G, Hanash A M, Sun J C. 2014. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. The Journal of Experimental Medicine, 211, 1723–1731.
Girard-Santosuosso O, Lantier F, Lantier I, Bumstead N, Elsen J M, Beaumont C. 2002. Heritability of susceptibility to Salmonella enteritidis infection in fowls and test of the role of the chromosome carrying the NRAMP1 gene. Genetics Selection Evolution, 34, 211–219.
Goffinet L, Mottet M, Kermani H, Renard-Charlet J D C, Geenen V, Martens H J. 2011. Impact of the somatotrope growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis upon thymus function: Pharmacological implications in regeneration of immune functions. Immunology Endocrine & Metabolic Agents in Medicinal Chemistry, 11, 10–20.
Halestrap A P. 2013. The SLC16 gene family - Structure, role and regulation in health and disease. Molecular Aspects of Medicine, 34, 337–349.
Hõrak P, Saks L, Ots I, Kollist H. 2002. Repeatability of condition indices in captive greenfinches (Carduelis chloris). Canadian Journal of Zoology, 80, 636–643.
Huang P, Zhou Y, Liu Z, Zhang P. 2016. Interaction between ANXA1 and GATA-3 in immunosuppression of CD4+ T cells. Mediators of Inflammation, 2016, 1701059.
Lollike K, Kjeldsen L, Sengeløv H, Borregaard N. 1995. Purification of lysozyme from human neutrophils, and development of an ELISA for quantification in cells and plasma. Leukemia, 9, 206–209.
Kamal A M, Smith S, Wijayasinghe M D S, Solito E, Corrigan C. 2001. An annexin 1 (ANXA1)-derived peptide inhibits prototype antigen-driven human T cell Th1 and Th2 responses in vitro. Clinical & Experimental Allergy, 31, 1116–1125.
Kang S, Tanaka T, Narazaki M, Kishimoto T. 2019. Targeting interleukin-6 signaling in clinic. Immunity, 50, 1007–1023.
Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360.
Kita A, Kasamatsu A, Nakashima D, Endo-Sakamoto Y, Ishida S, Shimizu T, Kimura Y, Miyamoto I, Yoshimura S, Shiiba M, Tanzawa H, Uzawa K. 2017. Activin B regulates adhesion, invasiveness, and migratory activities in oral cancer: A potential biomarker for metastasis. Journal of Cancer, 8, 2033–2041.
Klasing K C, Korver D R. 1997. Leukocytic cytokines regulate growth rate and composition following activation of the immune system. Journal of Animal Science, 75, 58–67.
Kramer T T, Reinke C R, James M. 1998. Reduction of fecal shedding and egg contamination of Salmonella enteritidis by increasing the number of heterophil adaptations. Avian Diseases, 42, 585–588.
Krams I, Vrublevska J, Cirule D, Kivleniece I, Krama T, Rantala M J, Sild E, Hõrak P. 2012. Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major). Comparative Biochemistry and Physiology (Part A: Molecular & Integrative Physiology), 161, 422–428.
Legarra A, Calenge F, Mariani P, Velge P, Beaumont C. 2011. Use of a reduced set of single nucleotide polymorphisms for genetic evaluation of resistance to Salmonella carrier state in laying hens. Poultry Science, 90, 731–736.
Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics, 23, 127–128.
Letunic I, BorR P. 2019. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Research, 47(W1), W256–W259.
Li P, Fan W, Everaert N, Liu R, Li Q, Zheng M, Cui H, Zhao G, Wen J. 2018. Messenger RNA sequencing and pathway analysis provide novel insights into the susceptibility to salmonella enteritidis infection in chickens. Frontiers in Genetics, 9, 256.
Liang Q, Zhang Y, Zeng M, Guan L, Xiao Y, Xiao F. 2018. The role of IP3R-SOCCs in Cr(VI)-induced cytosolic Ca2+ overload and apoptosis in L-02 hepatocytes. Toxicology Research, 7, 521–528.
Liu R, Xing S, Wang J, Zheng M, Cui H, Crooijmans R, Li Q, Zhao G, Wen J. 2019. A new chicken 55K SNP genotyping array. BMC Genomics, 20, 410.
Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.
Mead P S, Slutsker L, Dietz V, McCaig L F, Bresee J S, Shapiro C, Griffin P M, Tauxe R V. 1999. Food-related illness and death in the United States. Emerging Infectious Diseases, 5, 607–625.
Murphy P M. 1994. The molecular biology of leukocyte chemoattractant receptors. Annual Review of Immunology, 12, 593–633.
Pongkorpsakol P, Buasakdi C, Chantivas T, Chatsudthipong V, Muanprasat C. 2019. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. European Journal of Pharmacology, 842, 306–313.
Redmond S B, Chuammitri P, Andreasen C B, Palić D, Lamont S J. 2011. Genetic control of chicken heterophil function in advanced intercross lines: associations with novel and with known Salmonella resistance loci and a likely mechanism for cell death in extracellular trap production. Immunogenetics, 63, 449–458.
Sasaki T, Irie-Sasaki J, Jones R G, Oliveira-dos-Santos A J, Stanford W L, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T W, Ohashi P S, Suzuki A, Penninger J M. 2000. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science, 287, 1040–1046.
Seillet C, Rankin L C, Groom J R, Mielke L A, Tellier J, Chopin M, Huntington N D, Belz G T, Carotta S. 2014. Nfil3 is required for the development of all innate lymphoid cell subsets. Journal of Experimental Medicine, 211, 1733–1740.
Shao Y X, Lei Z, Wolf P G, Gao Y, Guo Y M, Zhang B K. 2017. Zinc supplementation, via GPR39, upregulates PKCζ to protect intestinal barrier integrity in Caco-2 cells challenged by Salmonella enterica serovar typhimurium. Journal of Nutrition, 147, 1282–1289.
Song X, Liu S, Wang W, Ma Z, Cao X, Jiang M. 2020. E3 ubiquitin ligase RNF170 inhibits innate immune responses by targeting and degrading TLR3 in murine cells. Cellular & Molecular Immunology, 17, 865–874.
Stephens L, Smrcka A, Cooke F T, Jackson T R, Sternweis P C, Hawkins P T. 1994. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. Cell, 77, 83–93.
Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B. 1995. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science, 269, 690–693.
Sun Y, Zhao G, Liu R, Zheng M, Hu Y, Wu D, Zhang L, Li P, Wen J. 2013. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. Bmc Genomics, 14, 458–458.
Team R, Team R. 2011. R: A language and environment for statistical computing. 2013. Computing, 1, 12–21.
Tu W, Cheung P T, Lau Y L. 1999. IGF-I increases interferon-γ and IL-6 mRNA expression and protein production in neonatal mononuclear cells. Pediatric Research, 46, 748–748.
Uciechowski P, Dempke W C M. 2020. Interleukin-6: A masterplayer in the cytokine network. Oncology, 98, 131–137.
Wu D, LaRosa G J, Simon M I. 1993. G protein-coupled signal transduction pathways for interleukin-8. Science, 261, 101–103.
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C Y, Wei L. 2011. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research, 39, 316–322.
Xuan N T, Hoang N H, Nhung V P, Duong N T, Ha N H, Hai N V. 2017. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression. Journal of Receptors and Signal Transduction, 37, 297–303.
Yonekawa S, Furuno A, Baba T, Fujiki Y, Ogasawara Y, Yamamoto A, Tagaya M, Tani K. 2011. Sec16B is involved in the endoplasmic reticulum export of the peroxisomal membrane biogenesis factor peroxin 16 (Pex16) in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 12746–12751.
Yoon S Y. 2019. Role of type 1 inositol 1,4,5-triphosphate receptors in mammalian oocytes. Development & Reproduction, 23, 1–9.
Yuzugullu H, Von T, Thorpe L M, Walker S R, Roberts T M, Frank D A, Zhao J J. 2016. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discovery, 2, 16030.
Zheng H, Worrall C, Shen H, Issad T, Seregard S, Girnita A, Girnita L. 2012. Selective recruitment of G protein-coupled receptor kinases (GRKs) controls signaling of the insulin-like growth factor 1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 109, 7055–7060.
Zhu J W, Doan K, Park J, Chau A H, Zhang H, Lowell C A, Weiss A. 2011. Receptor-like tyrosine phosphatases cd45 and cd148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity, 35, 757–769.
Zou Z, Zuo D, Yang J, Fan H. 2016. The ANXA1 released from intestinal epithelial cells alleviate DSS-induced colitis by improving NKG2A expression of Natural Killer cells. Biochemical and Biophysical Research Communications, 478, 213–220.

[1] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[2] HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1541-1546.
No Suggested Reading articles found!