Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1839-1849    DOI: 10.1016/j.jia.2023.06.021
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

Establishment of a transformation system in close relatives of wheat under the assistance of TaWOX5

Yanan Chang1, 2*, Junxian Liu2, 3*, Chang Liu4*, Huiyun Liu1, Huali Tang1, Yuliang Qiu1, Zhishan Lin1, Ke Wang1#, Yueming Yan2#, Xingguo Ye1# #br#

1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environment Improvement/College of Life Science, Capital Normal University, Beijing 100048, China

3 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China 4State Key Laboratory of Plant Cell and Chromosome Engineering/Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦近缘物种作为珍贵的遗传资源,对于农业生产、小麦功能基因组研究和品质改良具有重要的作用。在本研究中,我们利用来自小麦的再生相关基因TaWOX5,通过农杆菌转化一粒小麦,六倍体小黑麦和黑麦幼胚,以较高效率获得了转基因植株;进一步对转基因植株中的GUS基因和bar基因进行了PCR检测,对GUS蛋白和bar蛋白分别进行了组织化学染色以及bar试纸条检测,计算了转化效率。结果表明,一粒小麦基因型PI428182的转化效率为94.4%4六倍体小黑麦基因型Lin456、ZS3297、ZS1257和ZS3224的转化效率分别为52.1%、41.2%、19.4%和16.0%,黑麦基因型兰州黑麦的转化效率为7.8%。对转基因植株进行的荧光原位杂交(FISH)检测和基因组原位杂交(GISH)检测结果证实,在一粒小麦和六倍体小黑麦转基因植株中GUS基因倾向于整合到染色体末端,也有整合到近染色体着丝粒区域的情况;在六倍体小黑麦转基因植株中,外源DNA片段随机整合到了AABB基因组和RR基因组;转入的外源基因在转基因植株T1代中基本符合孟德尔遗传规律。本研究结果将为利用基因工程对一粒小麦、六倍体小黑麦和黑麦的遗传改良奠定基础,促进粮食和饲料生产,同时加快了包括小麦在内的麦类植物的功能基因组学研究。



Abstract  

Species closely related to wheat are important genetic resources for agricultural production, functional genomics studies and wheat improvement.  In this study, a wheat gene related to regeneration, TaWOX5, was applied to establish the Agrobacterium-mediated transformation systems of Triticum monococcum, hexaploid triticale, and rye (Secale cereale L.) using their immature embryos.  Transgenic plants were efficiently generated.  During the transformation process, the Agrobacterium infection efficiency was assessed by histochemical staining for β-glucuronidase (GUS).  Finally, the transgenic nature of regenerated plants was verified by polymerase chain reaction (PCR)-based genotyping for the presence of the GUS and bialaphos resistance (bar) genes, histochemical staining for GUS protein, and the QuickStix strip assay for bar protein.  The transformation efficiency of Tmonococcum genotype PI428182 was 94.4%; the efficiencies of four hexaploid triticale genotypes Lin456, ZS3297, ZS1257, and ZS3224 were 52.1, 41.2, 19.4, and 16.0%, respectively; and the transformation efficiency of rye cultivar Lanzhou Heimai was 7.8%.  Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) analyses indicated that the GUS transgenes were integrated into the distal or near centromere (proximal) regions of the chromosomes in transgenic Tmonococcum and hexaploid triticale plants.  In the transgenic hexaploid triticale plants, the foreign DNA fragment was randomly integrated into the AABB and RR genomes.  Furthermore, the transgene was almost stably inherited in the next generation by Mendel’s law.  The findings in this study will promote the genetic improvement of the three plant species for grain or forage production and the improvement of cereal species including wheat for functional genomics studies.

Keywords:  Triticum monococcum        hexaploid triticale        rye        TaWOX5        Agrobacterium       transformation efficiency   
Received: 07 March 2023   Accepted: 18 May 2023
Fund: 

This research was supported by grants from the National Natural Science Foundation of China (31971946) and the Technology Innovation Program of the Chinese Academy of Agricultural Sciences, China (2060302-2-23 and ASTIP-2060302-2-19).

About author:  #Correspondence Xingguo Ye, E-mail: yexingguo@caas.cn; Yueming Yan, E-mail: yanym@cnu.edu.cn; Ke Wang, E-mail: wangke03@caas.cn * These authors contributed equally to this study.

Cite this article: 

Yanan Chang, Junxian Liu, Chang Liu, Huiyun Liu, Huali Tang, Yuliang Qiu, Zhishan Lin, Ke Wang, Yueming Yan, Xingguo Ye. 2024.

Establishment of a transformation system in close relatives of wheat under the assistance of TaWOX5 . Journal of Integrative Agriculture, 23(6): 1839-1849.

Abranches R, Santos A P, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E. 2000. Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. The Plant Journal, 24, 713–723.

Audenaert K, Troch V, Landschoot S, Haesaert G. 2014. Biotic stresses in the anthropogenic hybrid triticale (×Triticosecale Wittmack): Current knowledge and breeding challenges. European Journal of Plant Pathology, 140, 615–630.

Bińka A, Orczyk W, Nadolska-Orczyk A. 2012. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittmack): Role of the binary vector system and selection cassettes. Journal of Applied Genetics, 53, 1–8.

Cantale C, Petrazzuolo F, Correnti A, Farneti A, Felici F, Latini A, Galeffi P. 2016. Triticale for bioenergy production. Agriculture and Agricultural Science Procedia, 8, 609–616.

Chen S K, Kurdyukov S, Kereszt A, Wang X D, Gresshoff P, Rose R. 2009. The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula. Planta, 230, 827–840.

Chen Z L, Debernardi J M, Dubcovsky J, Gallavotti A. 2022. Recent advances in crop transformation technologies. Nature Plants, 8, 1–9.

Crespo-Herrera L A, Garkava-Gustavsson L, Ahman I. 2017. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 154, 1–9.

Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F, Dubcovsky J. 2020. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 38, 1274–1279.

Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray J A. 2014. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Current Biology, 24, 1939–1944.        

van der Graaff E, Laux T, Rensing S A. 2009. The WUS homeobox-containing (WOX) protein family. Genome Biology, 10, 1–9.

Han F P, Lamb J C, Birchler J A. 2006. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America, 103, 3238–3243.

Harrison G E, Heslop-Harrison J S. 1995. Centromeric repetitive DNA sequences in the genus Brassica. Theoretical and Applied Genetics, 90, 157–165.

Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271–282.

Hu X, Xu L. 2016. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 172, 2363–2373.

Iglesias V A, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A. 1997. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. The Plant Cell, 9, 1251–1264.

Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745–750.

Kang H Y, Wang H, Huang J, Wang Y J, Li D Y, Diao C D, Zhu W, Tang Y, Wang Y, Fan X, Zeng J, Xu L L, Sha L N, Zhang H Q, Zhou Y H. 2016. Divergent development of hexaploid triticale by a wheat–rye–Psathyrostachys huashanica trigeneric hybrid method. PLoS ONE, 11, e0155667.

Kuleung C, Baenziger P S, Dweikat I. 2004. Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics, 108, 1147–1150.

Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H. 2006. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 4, 251–261.

Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L, Wang Z H, Yang S L, Xiong Z J, et al. 2021. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 53, 574–584.

Li J J, Zhao L, Lv B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C, Chen X H. 2023. Development and characterization of a novel common wheat–Mexico rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance. Journal of Integrative Agriculture, 22, 1291–1307.

Liang X N, Bie X M, Qiu Y L, Wang K, Yang Z J, Jia Y Q, Xu Z Y, Yu M, Du LP, Lin Z S, Ye X G. 2022. Development of powdery mildew resistant derivatives of wheat variety fielder for use in genetic transformation. The Crop Journal, 11, 573–583.

Liu H Y, Wang K, Wang J, Du L P, Pei X W, Ye X G. 2020. Genetic and agronomic traits stability of marker-free transgenic wheat plants generated from Agrobacterium-mediated co-transformation in T2 and T3 generations. Journal of Integrative Agriculture, 19, 23–32.

Liu X, Bie X M, Lin X, Li M L, Wang H Z, Zhang X Y, Yang Y M, Zhang C Y, Zhang X S, Xiao J. 2023. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature Plants, 9, 908–925.

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z M, Brink K, Igo E, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell, 28, 1998–2015.

Miroshnichenko D, Ashin D, Pushin A, Dolgov S. 2018. Genetic transformation of einkorn (Triticum monococcum L. ssp. monococcum L.), a diploid cultivated wheat species. BMC Biotechnology, 18, 68.

Molnár-Láng M, Ceoloni C, Doležel J. 2015. Alien Introgression in Wheat. Springer International Publishing, Switzerland. pp. 191–221.

Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. 2017. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 36, 1477–1491.

Nadolska-Orczyk A, Przetakiewicz A, Kopera K, Binka A, Orczyk W. 2005. Efficient method of Agrobacterium-mediated transformation for triticale (×Triticosecale Wittmack). Journal of Plant Growth Regulation, 24, 2–10.

Oettler G, Tams S H, Utz H F, Bauer E, Melchinger A E. 2005. Prospects for hybrid breeding in winter triticale: I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Science, 45, 1476–1482.

Osipova M, Dolgikh E, Lutova L. 2011. Features of the expression of a meristem-specific WOX5 gene during nodule organogenesis in legumes. Ontogenez, 42, 264–275.

Pi L, Aichinger E, van der Graaff E, Llavata-Peris C I, Weijers D, Hennig L, Groot E, Laux T. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell, 33, 576–588.

Popelka J C, Altpeter F. 2003. Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Molecular Breeding, 11, 203–211.

Popelka J C, Xu J P, Altpeter F. 2003. Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Research, 12, 587–596.

Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H. 2021. Potential of wild relatives of wheat: Ideal genetic resources for future breeding programs. Agronomy, 11, 1656.

Rao M J, Wang L. 2021. CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 254, 68.

Rodriguez-Leal D, Lemmon Z H, Man J, Bartlett M E, Lippman Z B. 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171, 470–480.

Salvo-Garrido H, Travella S, Schwarzacher T, Harwood W, Snape J. 2001. An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome, 44, 104–110.

Shewry P R. 2009. Wheat. Journal of Experimental Botany, 60, 1537–1553.

Svitashev S K, Somers D A. 2002. Characterization of transgene loci in plants using FISH: A picture is worth a thousand words. Plant Cell, Tissue and Organ Culture, 69, 205–214.

Wang K, Liu H Y, Du L P, Ye X G. 2017. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 15, 614–623.

Wang K, Shi L, Liang X N, Zhao P, Wang W W, Liu J X, Chang Y N, Hiei Y, Yanagihara C, Du L P, Ishida Y, Ye X G. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants, 8, 110–117.

Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W. 2023. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants, 9, 255–270.

Wang X M, Wang K, Du L P, Li J R, Xu H J, Ye X G. 2014. Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 13, 722–732.

Yang N, Wang R, Zhao Y. 2017. Revolutionize genetic studies and crop improvement with high-throughput and genome-scale CRISPR/Cas9 gene editing technology. Molecular Plant, 10, 1141–1143.

Yuan J, Guo X, Hu J, Lv Z L, Han F P. 2015. Characterization of two CENH3 genes and their roles in wheat evolution. New Phytologist, 206, 839–851.

Zaharieva M, Monneveux P. 2014. Cultivated einkorn wheat (Triticum monococcum L. subsp monococcum): the long life of a founder crop of agriculture. Genetic Resources and Crop Evolution, 61, 677–706.

Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants, 7, 1453–1460.

Zhang D, Zhang Z, Unver T, Zhang B. 2021. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 29, 207–221.

Zhang Y, Massel K, Godwin I D, Gao C. 2018. Applications and potential of genome editing in crop improvement. Genome Biology, 19, 210.

Zhao S, Jiang Q T, Ma J, Zhang X W, Zhao Q Z, Wang X Y, Wang C S, Cao X, Lu Z X, Zheng Y L. 2014. Characterization and expression analysis of WOX5 genes from wheat and its relatives. Gene, 537, 63–69.

No related articles found!
No Suggested Reading articles found!