Abranches R, Santos A P, Wegel E, Williams S, Castilho A, Christou P,
Shaw P, Stoger E. 2000. Widely separated multiple transgene integration sites
in wheat chromosomes are brought together at interphase. The Plant Journal, 24, 713–723.
Audenaert K, Troch V, Landschoot S, Haesaert G. 2014. Biotic stresses in
the anthropogenic hybrid triticale (×Triticosecale Wittmack): Current
knowledge and breeding challenges. European Journal of Plant Pathology, 140, 615–630.
Bińka A, Orczyk W, Nadolska-Orczyk A. 2012. The Agrobacterium-mediated
transformation of common wheat (Triticum aestivum L.) and
triticale (×Triticosecale Wittmack): Role of the binary vector system
and selection cassettes. Journal of Applied Genetics, 53, 1–8.
Cantale C, Petrazzuolo F, Correnti A, Farneti A, Felici F, Latini A,
Galeffi P. 2016. Triticale for bioenergy production. Agriculture and Agricultural Science Procedia, 8, 609–616.
Chen S K, Kurdyukov S, Kereszt A, Wang X D, Gresshoff P, Rose R. 2009. The
association of homeobox gene expression with stem cell formation and
morphogenesis in cultured Medicago truncatula. Planta, 230,
827–840.
Chen Z L, Debernardi J M, Dubcovsky J, Gallavotti A. 2022. Recent
advances in crop transformation technologies. Nature Plants, 8,
1–9.
Crespo-Herrera L A, Garkava-Gustavsson L, Ahman I. 2017. A systematic
review of rye (Secale cereale L.) as a source of resistance to
pathogens and pests in wheat (Triticum aestivum L.). Hereditas, 154, 1–9.
Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Ronald P, Palatnik J F,
Dubcovsky J. 2020. A GRF-GIF chimeric protein improves the regeneration
efficiency of transgenic plants. Nature Biotechnology, 38,
1274–1279.
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, Dewitte W, Murray
J A. 2014. WOX5 suppresses CYCLIN D activity to establish
quiescence at the center of the root stem cell niche. Current Biology, 24, 1939–1944.
van der Graaff E, Laux T, Rensing S A. 2009. The WUS homeobox-containing
(WOX) protein family. Genome Biology, 10, 1–9.
Han F P, Lamb J C, Birchler J A. 2006. High frequency of centromere
inactivation resulting in stable dicentric chromosomes of maize. Proceedings of the National Academy of Sciences of the United States of America, 103,
3238–3243.
Harrison G E, Heslop-Harrison J S. 1995. Centromeric repetitive DNA
sequences in the genus Brassica. Theoretical and Applied Genetics, 90, 157–165.
Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of
rice (Oryza sativa L.) mediated by Agrobacterium and
sequence analysis of the boundaries of the T-DNA. The Plant Journal, 6, 271–282.
Hu X, Xu L. 2016. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology, 172, 2363–2373.
Iglesias V A, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T,
Spiker S, Matzke M, Matzke A. 1997. Molecular and cytogenetic analyses of
stably and unstably expressed transgene loci in tobacco. The Plant Cell, 9, 1251–1264.
Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. 1996. High
efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745–750.
Kang H Y, Wang H, Huang J, Wang Y J, Li D Y, Diao C D, Zhu W, Tang Y,
Wang Y, Fan X, Zeng J, Xu L L, Sha L N, Zhang H Q, Zhou Y H. 2016. Divergent
development of hexaploid triticale by a wheat–rye–Psathyrostachys huashanica trigeneric hybrid method. PLoS ONE, 11, e0155667.
Kuleung C, Baenziger P S, Dweikat I. 2004. Transferability of SSR markers
among wheat, rye, and triticale. Theoretical and Applied Genetics, 108, 1147–1150.
Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H. 2006. Genetic
transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnology Journal, 4, 251–261.
Li G W, Wang L J, Yang J P, He H, Jin H B, Li X M, Ren T H, Ren Z L, Li
F, Han X, Zhao X G, Dong L L, Li Y W, Song Z P, Yan Z H, Zheng N N, Shi C L,
Wang Z H, Yang S L, Xiong Z J, et al. 2021. A high-quality genome
assembly highlights rye genomic characteristics and agronomically important
genes. Nature Genetics, 53, 574–584.
Li J J, Zhao L, Lv B Y, Fu Y, Zhang S F, Liu S H, Yang Q H, Wu J, Li J C,
Chen X H. 2023. Development and characterization of a novel common wheat–Mexico
rye T1DL·1RS translocation line with stripe rust and powdery mildew
resistance. Journal of Integrative Agriculture, 22,
1291–1307.
Liang X N, Bie X M, Qiu Y L, Wang K, Yang Z J, Jia Y Q, Xu Z Y, Yu M, Du
LP, Lin Z S, Ye X G. 2022. Development of powdery mildew resistant derivatives
of wheat variety fielder for use in genetic transformation. The Crop Journal, 11, 573–583.
Liu H Y, Wang K, Wang J, Du L P, Pei X W, Ye X G. 2020. Genetic and
agronomic traits stability of marker-free transgenic wheat plants generated
from Agrobacterium-mediated co-transformation in T2 and T3 generations. Journal of Integrative Agriculture, 19,
23–32.
Liu X, Bie X M, Lin X, Li M L, Wang H Z, Zhang X Y, Yang Y M, Zhang C Y,
Zhang X S, Xiao J. 2023. Uncovering the transcriptional regulatory network
involved in boosting wheat regeneration and transformation. Nature Plants, 9, 908–925.
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C,
Lenderts B, Chamberlin M, Cushatt J, Wang L J, Ryan L, Khan T, Chow-Yiu J, Hua
W, Yu M, Banh J, Bao Z M, Brink K, Igo E, et al. 2016. Morphogenic
regulators Baby boom and Wuschel improve monocot
transformation. The Plant Cell, 28, 1998–2015.
Miroshnichenko D, Ashin D, Pushin A, Dolgov S. 2018. Genetic
transformation of einkorn (Triticum monococcum L. ssp. monococcum
L.), a diploid cultivated wheat species. BMC Biotechnology, 18,
68.
Molnár-Láng M, Ceoloni C, Doležel J. 2015. Alien Introgression in
Wheat. Springer International Publishing, Switzerland. pp. 191–221.
Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. 2017.
Selectable marker independent transformation of recalcitrant maize inbred B73
and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 36, 1477–1491.
Nadolska-Orczyk A, Przetakiewicz A, Kopera K, Binka A, Orczyk W. 2005.
Efficient method of Agrobacterium-mediated transformation for triticale
(×Triticosecale Wittmack). Journal of Plant Growth Regulation, 24, 2–10.
Oettler G, Tams S H, Utz H F, Bauer E, Melchinger A E. 2005. Prospects
for hybrid breeding in winter triticale: I. Heterosis and combining ability for
agronomic traits in European elite germplasm. Crop Science, 45,
1476–1482.
Osipova M, Dolgikh E, Lutova L. 2011. Features of the expression of a
meristem-specific WOX5 gene during nodule organogenesis in legumes. Ontogenez, 42, 264–275.
Pi L, Aichinger E, van der Graaff E, Llavata-Peris C I, Weijers D, Hennig
L, Groot E, Laux T. 2015. Organizer-derived WOX5 signal maintains root
columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell, 33, 576–588.
Popelka J C, Altpeter F. 2003. Agrobacterium tumefaciens-mediated
genetic transformation of rye (Secale cereale L.). Molecular Breeding, 11, 203–211.
Popelka J C, Xu J P, Altpeter F. 2003. Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and
production of instantly marker-free transgenic rye. Transgenic Research, 12, 587–596.
Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H. 2021. Potential
of wild relatives of wheat: Ideal genetic resources for future breeding
programs. Agronomy, 11, 1656.
Rao M J, Wang L. 2021. CRISPR/Cas9 technology for improving agronomic
traits and future prospective in agriculture. Planta, 254, 68.
Rodriguez-Leal D, Lemmon Z H, Man J, Bartlett M E, Lippman Z B. 2017.
Engineering quantitative trait variation for crop improvement by genome
editing. Cell, 171, 470–480.
Salvo-Garrido H, Travella S, Schwarzacher T, Harwood W, Snape J. 2001. An
efficient method for the physical mapping of transgenes in barley using in
situ hybridization. Genome, 44, 104–110.
Shewry P R. 2009. Wheat. Journal of Experimental Botany, 60, 1537–1553.
Svitashev S K, Somers D A. 2002. Characterization of transgene loci in
plants using FISH: A picture is worth a thousand words. Plant Cell, Tissue and Organ Culture, 69, 205–214.
Wang K, Liu H Y, Du L P, Ye X G. 2017. Generation of marker-free
transgenic hexaploid wheat via an Agrobacterium-mediated
co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 15, 614–623.
Wang K, Shi L, Liang X N, Zhao P, Wang W W, Liu J X, Chang Y N, Hiei Y,
Yanagihara C, Du L P, Ishida Y, Ye X G. 2022. The gene TaWOX5 overcomes
genotype dependency in wheat genetic transformation. Nature Plants, 8, 110–117.
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A,
Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W. 2023. Leaf
transformation for efficient random integration and targeted genome
modification in maize and sorghum. Nature Plants, 9,
255–270.
Wang X M, Wang K, Du L P, Li J R, Xu H J, Ye X G. 2014. Effects of
environmental temperature on the regeneration frequency of the immature embryos
of wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 13, 722–732.
Yang N, Wang R, Zhao Y. 2017. Revolutionize genetic studies and crop
improvement with high-throughput and genome-scale CRISPR/Cas9 gene editing
technology. Molecular Plant, 10, 1141–1143.
Yuan J, Guo X, Hu J, Lv Z L, Han F P. 2015. Characterization of two CENH3 genes and their roles in wheat evolution. New Phytologist, 206,
839–851.
Zaharieva M, Monneveux P. 2014. Cultivated einkorn wheat (Triticum monococcum L. subsp monococcum): the long life of a founder crop
of agriculture. Genetic Resources and Crop Evolution, 61, 677–706.
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of
callus is required for organ regeneration. Nature Plants, 7,
1453–1460.
Zhang D, Zhang Z, Unver T, Zhang B. 2021. CRISPR/Cas: A powerful tool for
gene function study and crop improvement. Journal of Advanced Research, 29, 207–221.
Zhang Y, Massel K, Godwin I D, Gao C. 2018. Applications and potential of
genome editing in crop improvement. Genome Biology, 19,
210.
Zhao S, Jiang Q T, Ma J, Zhang X W, Zhao Q Z, Wang X Y, Wang C S, Cao X,
Lu Z X, Zheng Y L. 2014. Characterization and expression analysis of WOX5 genes from wheat and its relatives. Gene, 537, 63–69.
|