Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (03): 631-639    DOI: 10.1016/S2095-3119(17)61784-2
Special Issue: 昆虫生防和生态合辑Insect Biocontrol and Ecology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton
FAN Yin-jun1, LI Fen1, Abd Allah A. H. Mohammed1, 2, YI Xiao-qin1, ZHANG Min1, Nicolas Desneux3, GAO Xi-wu1  
1 Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China
2 General Directorate of Plant Protection and Biological Control, Ministry of Agriculture/Animal Resources and Irrigation, Khartoum State 11111, Sudan
3 French National Institute for Agricultural Research (INRA), Université Côte d’Azur, CNRS, UMR 1355-7254, Institute Sophia Agrobiotech, Sophia Antipolis 06903, France
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Aphids are considered as one of the key pests for wheat production worldwide.  Major aphid species that infest wheat in China include Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum and Metopolophium dirhodum.  However, during our wheat field survey in Wenshang County of Shangdong Province, China, we observed that Aphis gossypii can feed on wheat.  The damage risk of A. gossypii on wheat was assessed using host shift method.  A population of A. gossypii collected from a wheat field in 2015 and another population reared on cotton under laboratory conditions for a decade without exposure to insecticides were used in the study.  The results of host shift demonstrated that the A. gossypii colony from wheat has not yet developed wheat specialization.  Moreover, the assessment of A. gossypii fitness on wheat and cotton showed that fecundity and net reproductive rate of A. gossypii population fed on wheat was significantly higher comparing to the population fed on cotton, whether the initial host of A. gossypii population was wheat or cotton.  This study raises a warning that the cotton aphid has potential to establish well on wheat and it may cause significant effects under specific circumstances.  Therefore, future studies are required to evaluate the effects of A. gossypii on wheat production.  
Keywords:  wheat        Aphis gossypii        cotton        intercropping cotton with wheat        fitness  
Received: 10 May 2017   Accepted:
Fund: 

This research was supported by the Highland Barley Research System of China.

Corresponding Authors:  Correspondence GAO Xi-wu, Tel: +86-10-62732974, E-mail: gaoxiwu@263.net.cn    
About author:  FAN Yin-jun, E-mail: fanyinjun89@126.com;

Cite this article: 

FAN Yin-jun, LI Fen, Abd Allah A. H. Mohammed, YI Xiao-qin, ZHANG Min, Nicolas Desneux, GAO Xi-wu. 2018. The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton. Journal of Integrative Agriculture, 17(03): 631-639.

Agrawal A A. 2000. Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology, 81, 500–508.

Bass C, Zimmer C T, Riveronc J M, Wilding C S, Wondji C S, Kaussmann M, Fielda L M, Williamsona M S, Nauen R. 2013. Gene ampli?cation and microsatellite polymorphism underlie a recent insect host shift. Proceedings of the National Academy of Sciences of the United States of America, 110, 19460–19465.

Blair C P, Schlanger R V, Diamond S E, Abrahamson W G. 2010. Nutrition as a facilitator of host race formation: The shift of a stem-boring beetle to a gall host. Ecological Entomology, 35, 396–406.

Carletto J, Blin A, Vanlerberghe-Masutti F. 2009a. DNA-based discrimination between the sibling species Aphis gossypii Glover and Aphis frangulae Kaltenbach. Systematic Entomology, 34, 307–314.

Carletto J, Lombaert E, Chavigny P, Brévaul T T, Lapchin L, Vanlerberghe-Masutti F. 2009b. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Molecular Ecology, 18, 2198–2212.

Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.

Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 24, 225–240.

Diaz B M, Fereres A. 2005. Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environmental Entomology, 34, 527–534.

Fagundes A C, Arnt T. 1978. The occurrence of the aphid Aphis gossypii on wheat in Rio Grande do Sul. Agronomia Sulriograndense, 14, 143–144.

Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist, 119, 803–823.

Huang Y B, Chi H. 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Diptera: Tephritidae). Jounal of Agriculture and Forest, 61, 37–45.

Komazaki S, Shigehara S, Toda S. 2010. Diversity of Japanese Aphis gossypii and comparison with other Aphis species based on the mitochondrial cytochrome oxidase I sequence. Annals of the Entomological Society of America, 103, 916–924.

Lee W, Lee Y, Kim H, Kimoto S, Lee S. 2014. Developing a new molecular marker for aphid species identification: Evaluation of eleven candidate genes with species-level sampling. Journal of Asia-Pacific Entomology, 17, 617–627.

Lee Y, Lee W, Lee S, Kim H. 2015. A cryptic species of Aphis gossypii (Hemiptera: Aphididae) complex revealed by genetic divergence and different host plant association. Bulletin of Entomological Research, 105, 40–51.

Liu L J, Zheng H Y, Jiang F, Guo W, Zhou S T. 2014. Comparative transcriptional analysis of asexual and sexual morphs reveals possible mechanisms in reproductive polyphenism of the cotton aphid. PLoS ONE, 9, e99506.

Liu X D, Zhai B P, Zhang X. 2008. Specialized host-plant performance of the cotton aphid is altered by experience. Ecological Research, 23, 919–925.

Lu Y, Gao X W. 2009. Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bulletin of Entomological Research, 99, 611–617.

Ma X M, Liu X X, Zhang Q W, Zhao J Z, Cai Q N, Ma Y A, Chen D M. 2006. Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat-cotton relay intercropping system. Entomologia Experimentalis et Applicata, 121, 235–241.

Maia A H N, Luiz A J B, Campanhola C. 2000. Statistical inference on associated fertility life table parameters using jackknife technique: Computational aspects. Journal of Economic Entomology, 93, 511–518.

Margaritopoulos J T, Kasprowicz L, Malloch G L, Fenton B. 2009. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecology, 9, 13.

Mattsson M, Hood G R, Feder J L, Ruedas L A. 2015. Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States. Ecology and Evolution, 5, 823–837.

Men X, Ge F, Yardim E, Parajulee M. 2004. Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids in seedling cotton. Biocontrol, 49, 701–714.

Migui S M, Lamb R J. 2003. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bulletin of Entomological Research, 93, 323–333.

Murphy S M. 2004. Enemy-free space maintains swallowtail butter?y host shift. Proceedings of the National Academy of Sciences of the United States of America, 101, 18048–18052.

Obopile M, Ositile M. 2009. Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) varieties. Journal of Pest Science, 83, 9–14.

Parajulee M N, Montandon R, Slosser J E. 1997. Relay intercropping to enhance abundance of insect predators of cotton aphid (Aphis gossypii Glover) in Texas cotton. International Journal of Pest Management, 43, 227–232.

Rossa F, Mclópez A. 2013. Effects of pepper (Capsicum annuum) cultivars on the biology and life table parameters of Myzuspersicae (Sulz.) (Hemiptera: Aphididae). Neotropical Entomology, 42, 634–641.

Sarfraz M, Dosdall L M, Keddie B A. 2006. Diamondback moth-host plant interactions: Implications for pest management. Crop Protection, 25, 625–639.

Wang L, Zhang S, Luo J Y, Wang C Y, Lv L M, Zhu X Z. 2016. Identification of Aphis gossypii Glover (Hemiptera: Aphididae) biotypes from different host plants in North China. PLoS ONE, 11, e0146345.

Wu W, Liang X L, Zhao H Y, Xu T T, Liu X D. 2013. Special plant species determines diet breadth of phytophagous insects: A study on host plant expansion of the host-specialized Aphis gossypii Glover. PLoS ONE, 8, e60832.

Xin J J, Shang Q L, Desneux N, Gao X W. 2014. Genetic diversity of Sitobion avenae (Homoptera: Aphididae) populations from different geographic regions in China. PLoS ONE, 9, e109349.

Zhang F, Liu X D. 2012. Variation of host-specialized and migratory biotypes of Aphis gossypii Glover based on mtDNA COI gene sequences. Jounal of Nanjing Agriculture University, 35, 65–70. (in Chinese)

Zhang Y J, Jiang Y Y, Feng X D, Xia B, Zeng J, Liu Y. 2009. Occurring trends of major crop pests in national significances in 2009. China Plant Protection, 29, 33–36. (in Chinese)

Zvereva E L, Kruglova O Y, Kozlov M V. 2010. Drivers of host plant shifts in the leaf beetle Chrysome lalapponica: natural enemies or competition? Ecological Entomology, 35, 611–622.
 
[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[4] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Wei Wang, Renfu Zhang, Haiyang Liu, Ruifeng Ding, Qiushi Huang, Ju Yao, Gemei Liang. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2332-2345.
[7] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[8] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[9] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[10] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[11] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[12] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[13] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[14] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[15] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

No Suggested Reading articles found!