Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (03): 631-639    DOI: 10.1016/S2095-3119(17)61784-2
Special Issue: 昆虫生防和生态Insect Biocontrol and Ecology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton
FAN Yin-jun1, LI Fen1, Abd Allah A. H. Mohammed1, 2, YI Xiao-qin1, ZHANG Min1, Nicolas Desneux3, GAO Xi-wu1  
1 Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P.R.China
2 General Directorate of Plant Protection and Biological Control, Ministry of Agriculture/Animal Resources and Irrigation, Khartoum State 11111, Sudan
3 French National Institute for Agricultural Research (INRA), Université Côte d’Azur, CNRS, UMR 1355-7254, Institute Sophia Agrobiotech, Sophia Antipolis 06903, France
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Aphids are considered as one of the key pests for wheat production worldwide.  Major aphid species that infest wheat in China include Sitobion avenae, Rhopalosiphum padi, Schizaphis graminum and Metopolophium dirhodum.  However, during our wheat field survey in Wenshang County of Shangdong Province, China, we observed that Aphis gossypii can feed on wheat.  The damage risk of A. gossypii on wheat was assessed using host shift method.  A population of A. gossypii collected from a wheat field in 2015 and another population reared on cotton under laboratory conditions for a decade without exposure to insecticides were used in the study.  The results of host shift demonstrated that the A. gossypii colony from wheat has not yet developed wheat specialization.  Moreover, the assessment of A. gossypii fitness on wheat and cotton showed that fecundity and net reproductive rate of A. gossypii population fed on wheat was significantly higher comparing to the population fed on cotton, whether the initial host of A. gossypii population was wheat or cotton.  This study raises a warning that the cotton aphid has potential to establish well on wheat and it may cause significant effects under specific circumstances.  Therefore, future studies are required to evaluate the effects of A. gossypii on wheat production.  
Keywords:  wheat        Aphis gossypii        cotton        intercropping cotton with wheat        fitness  
Received: 10 May 2017   Accepted:
Fund: 

This research was supported by the Highland Barley Research System of China.

Corresponding Authors:  Correspondence GAO Xi-wu, Tel: +86-10-62732974, E-mail: gaoxiwu@263.net.cn    
About author:  FAN Yin-jun, E-mail: fanyinjun89@126.com;

Cite this article: 

FAN Yin-jun, LI Fen, Abd Allah A. H. Mohammed, YI Xiao-qin, ZHANG Min, Nicolas Desneux, GAO Xi-wu. 2018. The damage risk evaluation of Aphis gossypii on wheat by host shift and fitness comparison in wheat and cotton. Journal of Integrative Agriculture, 17(03): 631-639.

Agrawal A A. 2000. Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology, 81, 500–508.

Bass C, Zimmer C T, Riveronc J M, Wilding C S, Wondji C S, Kaussmann M, Fielda L M, Williamsona M S, Nauen R. 2013. Gene ampli?cation and microsatellite polymorphism underlie a recent insect host shift. Proceedings of the National Academy of Sciences of the United States of America, 110, 19460–19465.

Blair C P, Schlanger R V, Diamond S E, Abrahamson W G. 2010. Nutrition as a facilitator of host race formation: The shift of a stem-boring beetle to a gall host. Ecological Entomology, 35, 396–406.

Carletto J, Blin A, Vanlerberghe-Masutti F. 2009a. DNA-based discrimination between the sibling species Aphis gossypii Glover and Aphis frangulae Kaltenbach. Systematic Entomology, 34, 307–314.

Carletto J, Lombaert E, Chavigny P, Brévaul T T, Lapchin L, Vanlerberghe-Masutti F. 2009b. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Molecular Ecology, 18, 2198–2212.

Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34.

Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology Academia Sinica, 24, 225–240.

Diaz B M, Fereres A. 2005. Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environmental Entomology, 34, 527–534.

Fagundes A C, Arnt T. 1978. The occurrence of the aphid Aphis gossypii on wheat in Rio Grande do Sul. Agronomia Sulriograndense, 14, 143–144.

Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist, 119, 803–823.

Huang Y B, Chi H. 2012. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Diptera: Tephritidae). Jounal of Agriculture and Forest, 61, 37–45.

Komazaki S, Shigehara S, Toda S. 2010. Diversity of Japanese Aphis gossypii and comparison with other Aphis species based on the mitochondrial cytochrome oxidase I sequence. Annals of the Entomological Society of America, 103, 916–924.

Lee W, Lee Y, Kim H, Kimoto S, Lee S. 2014. Developing a new molecular marker for aphid species identification: Evaluation of eleven candidate genes with species-level sampling. Journal of Asia-Pacific Entomology, 17, 617–627.

Lee Y, Lee W, Lee S, Kim H. 2015. A cryptic species of Aphis gossypii (Hemiptera: Aphididae) complex revealed by genetic divergence and different host plant association. Bulletin of Entomological Research, 105, 40–51.

Liu L J, Zheng H Y, Jiang F, Guo W, Zhou S T. 2014. Comparative transcriptional analysis of asexual and sexual morphs reveals possible mechanisms in reproductive polyphenism of the cotton aphid. PLoS ONE, 9, e99506.

Liu X D, Zhai B P, Zhang X. 2008. Specialized host-plant performance of the cotton aphid is altered by experience. Ecological Research, 23, 919–925.

Lu Y, Gao X W. 2009. Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bulletin of Entomological Research, 99, 611–617.

Ma X M, Liu X X, Zhang Q W, Zhao J Z, Cai Q N, Ma Y A, Chen D M. 2006. Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat-cotton relay intercropping system. Entomologia Experimentalis et Applicata, 121, 235–241.

Maia A H N, Luiz A J B, Campanhola C. 2000. Statistical inference on associated fertility life table parameters using jackknife technique: Computational aspects. Journal of Economic Entomology, 93, 511–518.

Margaritopoulos J T, Kasprowicz L, Malloch G L, Fenton B. 2009. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecology, 9, 13.

Mattsson M, Hood G R, Feder J L, Ruedas L A. 2015. Rapid and repeatable shifts in life-history timing of Rhagoletis pomonella (Diptera: Tephritidae) following colonization of novel host plants in the Pacific Northwestern United States. Ecology and Evolution, 5, 823–837.

Men X, Ge F, Yardim E, Parajulee M. 2004. Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids in seedling cotton. Biocontrol, 49, 701–714.

Migui S M, Lamb R J. 2003. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bulletin of Entomological Research, 93, 323–333.

Murphy S M. 2004. Enemy-free space maintains swallowtail butter?y host shift. Proceedings of the National Academy of Sciences of the United States of America, 101, 18048–18052.

Obopile M, Ositile M. 2009. Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) varieties. Journal of Pest Science, 83, 9–14.

Parajulee M N, Montandon R, Slosser J E. 1997. Relay intercropping to enhance abundance of insect predators of cotton aphid (Aphis gossypii Glover) in Texas cotton. International Journal of Pest Management, 43, 227–232.

Rossa F, Mclópez A. 2013. Effects of pepper (Capsicum annuum) cultivars on the biology and life table parameters of Myzuspersicae (Sulz.) (Hemiptera: Aphididae). Neotropical Entomology, 42, 634–641.

Sarfraz M, Dosdall L M, Keddie B A. 2006. Diamondback moth-host plant interactions: Implications for pest management. Crop Protection, 25, 625–639.

Wang L, Zhang S, Luo J Y, Wang C Y, Lv L M, Zhu X Z. 2016. Identification of Aphis gossypii Glover (Hemiptera: Aphididae) biotypes from different host plants in North China. PLoS ONE, 11, e0146345.

Wu W, Liang X L, Zhao H Y, Xu T T, Liu X D. 2013. Special plant species determines diet breadth of phytophagous insects: A study on host plant expansion of the host-specialized Aphis gossypii Glover. PLoS ONE, 8, e60832.

Xin J J, Shang Q L, Desneux N, Gao X W. 2014. Genetic diversity of Sitobion avenae (Homoptera: Aphididae) populations from different geographic regions in China. PLoS ONE, 9, e109349.

Zhang F, Liu X D. 2012. Variation of host-specialized and migratory biotypes of Aphis gossypii Glover based on mtDNA COI gene sequences. Jounal of Nanjing Agriculture University, 35, 65–70. (in Chinese)

Zhang Y J, Jiang Y Y, Feng X D, Xia B, Zeng J, Liu Y. 2009. Occurring trends of major crop pests in national significances in 2009. China Plant Protection, 29, 33–36. (in Chinese)

Zvereva E L, Kruglova O Y, Kozlov M V. 2010. Drivers of host plant shifts in the leaf beetle Chrysome lalapponica: natural enemies or competition? Ecological Entomology, 35, 611–622.
 
[1] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[2] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[3] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[4] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[5] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[6] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[7] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[8] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2989-3003.
[9] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2954-2973.
[10] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[11] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[12] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[13] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[14] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[15] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
No Suggested Reading articles found!