Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3416-3429    DOI: 10.1016/j.jia.2023.02.041
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions

YIN Wen1, 2, FAN Zhi-long1, 2, HU Fa-long1, 2, FAN Hong1, HE Wei1, SUN Ya-li1, WANG Feng1, 2, ZHAO Cai1, YU Ai-zhong1, 2, CHAI Qiang1, 2#

1 State Key Laboratory of Aridland Crop Science, Lanzhou 730070, P.R.China
2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

秸秆还田是干旱地区广泛应用的作物高效生产技术,但其能否通过改善作物生理生态特性而进一步提高产量还需实践验证。在甘肃河西绿洲灌区,通过田间试验,研究不同秸秆还田方式[免耕秸秆覆盖还田(NTSM)、免耕秸秆立茬还田(NTSS)、传统翻耕秸秆还田(CTS)及传统翻耕无秸秆还田(CT, 对照)对小麦生理生态特性的调控效应,以期阐明秸秆还田影响小麦产量的生理生态机制。结果表明,NTSMNTSS处理对小麦生理生态特性的调作用优于CTSCT而获得较高产量,NTSM因较优的调控效应使其增产幅度略高于NTSS。与CT相比,NTSM降低了小麦孕穗期之前的叶面积指数为6.1–7.6%,提高孕穗期之后的叶面积指数为38.9–45.1%,NTSM可有效地调控小麦光合源动态NTSMCT提高小麦灌浆期与蜡熟期光合速率为10.2–21.4%与11.0–21.6%,提高蒸腾速率为4.4–10.0%与5.3–6.1%,提高叶片水分利用效率为5.6–10.4%与5.4–14.6%。与CT相比,NTSM提高小麦抽穗期至蜡熟期叶片与土壤水势分别为7.5–12.0%与8.9–24.0%NTSMCT降低了小麦叶-土水势差,表明NTSM处理有利于保持干旱条件下小麦植株水分需求和土壤水分供给的稳定性。NTSMCT增产18.6~27.3%,其产归因于穗数、穗粒数和千粒重的协同增加。因此,免耕秸秆覆盖还田是干旱灌区优化小麦生理生态特性及获得高产的可行栽培措施。



Abstract  Straw returning to the field is a technical measure of crop production widely adopted in arid areas.  It is unknown whether crop yield can be further increased by improving the eco-physiological characteristics when straw returning is applied in the crop production system.  So, a three-year field experiment was conducted with various straw returning treatments for wheat production: (i) no-tillage with straw mulching (NTSM), (ii) no-tillage with straw standing (NTSS), (iii) conventional tillage with straw incorporation (CTS), and (iv) conventional tillage with no straw returning (CT, control).  The eco-physiological and yield formation indicators were investigated to provide the basis for selecting the appropriate straw returning method to increase wheat yield and clarifying its regulation mechanism on eco-physiology.  The results showed that NTSM and NTSS treatments had better regulation of eco-physiological characteristics and had a higher yield increase than CTS and CT.  Meanwhile, NTSM had a relatively higher yield than NTSS through better regulation of eco-physiological characteristics.  Compared to CT, the leaf area index of NTSM was decreased by 6.1–7.6% before the Feekes 10.0 stage of wheat, but that of NTSM was increased by 38.9–45.1% after the Feekes 10.0 stage.  NTSM effectively regulated the dynamics of the photosynthetic source of green leaves during the wheat growth period.  NTSM improved net photosynthetic rate by 10.2–21.4% and 11.0–21.6%, raised transpiration rate by 4.4–10.0% and 5.3–6.1%, increased leaf water use efficiency by 5.6–10.4% and 5.4–14.6%, at Feekes 11.0 and 11.2 stages of wheat, compared to CT, respectively.  NTSM had higher leaf water potential (LWP) by 7.5–12.0% and soil water potential (SWP) by 8.9–24.0% from Feekes 10.3 to 11.2 stages of wheat than CT.  Meanwhile, the absolute value of difference on LWP and SWP with NTSM was less than that with CT, indicating that NTSM was conducive to holding the stability of water demand for wheat plants and water supply of soil at arid conditions.  Thus, NTSM had a greater grain yield of wheat by 18.6–27.3% than CT, and the high yield was attributed to the synchronous increase and cooperative development of ear number, grain number per ear, and 1 000-grain weight.  NTSM had a positive effect on regulating the eco-physiological characteristics and can be recommended to enhance wheat grain yield in arid conditions.
Keywords:  Triticum aestivum L.        straw management        grain yield        eco-physiological traits        arid ecological environment  
Received: 06 December 2022   Accepted: 16 January 2023
Fund: We are very grateful for financial support of the National Natural Science Foundation of China (32101857, 32372238, and U21A20218), the Fuxi Young Talents Fund of Gansu Agricultural University, China (Gaufx-03Y10), the Science and Technology Program of Gansu Province, China (23JRRA1407), and the ‘Double First-Class’ Key Scientific Research Project of Education Department in Gansu Province, China (GSSYLXM-02).
About author:  YIN Wen, E-mail: yinwen@gsau.edu.cn; #Correspondence CHAI Qiang, Tel: +86-931-7631104, E-mail: chaiq@gsau.edu.cn

Cite this article: 

YIN Wen, FAN Zhi-long, HU Fa-long, FAN Hong, HE Wei, SUN Ya-li, WANG Feng, ZHAO Cai, YU Ai-zhong, CHAI Qiang. 2023. No-tillage with straw mulching boosts grain yield of wheat via improving the eco-physiological characteristics in arid regions. Journal of Integrative Agriculture, 22(11): 3416-3429.

Agegnehu G, Nelson P N, Bird M I. 2016. Crop yield, plant nutrient uptake and soil physicochemical properties under organic soil amendments and nitrogen fertilization on Nitisols. Soil and Tillage Research160, 1–13.

Ahmad I, Kamran M, Su W, Haiqi W, Ali S, Bilegjargal B, Ahmad S, Liu T N, Cai T, Han Q F. 2018. Application of uniconazole improves photosynthetic efficiency of maize by enhancing the antioxidant defense mechanism and delaying leaf senescence in semiarid regions. Journal of Plant Growth Regulation38, 855–869.

Al-Darby A M, Lowery B, Daniel T C. 1987. Corn leaf water potential and water use efficiency under three conservation tillage systems. Soil and Tillage Research9, 241–254.

Baker L A, Habershon S. 2017. Photosynthesis, pigment–protein complexes and electronic energy transport: simple models for complicated processes. Science Progress100, 313–330.

Bianchi A, Masseroni D, Thalheimer M, de Medici L O, Facchi A. 2017. Field irrigation management through soil water potential measurements: A review. Italian Journal of Agrometeorology22, 25–38.

Bidinger F, Musgrave R B, Fischer R A. 1977. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature270, 431–433.

Calvo B O, Lagorio M G. 2019. Quantitative effects of pigmentation on the re-absorption of chlorophyll a fluorescence and energy partitioning in leaves. Photochemistry and Photobiology95, 1360–1368.

Cao X, Wu M, Guo X, Zheng Y, Gong Y, Wu N, Wang W G. 2017. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment609, 587–597.

Chai Q, Gan Y T, Turner N C, Zhang R Z, Yang C, Niu Y N, Siddique K H M. 2014. Water-saving innovations in Chinese agriculture. Advances in Agronomy126, 149–201.

Chen S Y, Zhang X Y, Pei D, Sun H Y, Chen S L. 2007. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Annals of Applied Biology150, 261–268.

Chen X, Han X Z, Wang X H, Guo Z X, Yan J, Lu X C, Zou W X. 2023. Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol. Journal of Integrative Agriculture22, 1546–1559.

Ciampitti I A, Vyn T J. 2011. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research121, 2–18.

D’Odorico P, Chiarelli D D, Rosa L, Bini A, Rulli M C. 2020. The global value of water in agriculture. Proceedings of the National Academy of Sciences of the United States of America117, 21985–21993.

Dong Z, Zhang X, Li J, Zhang C, Wei T, Yang Z, Cai T, Zhang P, Ding R X, Jia Z K. 2019. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis. Agricultural and Forest Meteorology272–273, 12–19.

Feng F X, Huang G B, Chai Q, Yu A Z. 2010. Tillage and straw management impacts on soil properties, root growth, and grain yield of winter wheat in northwestern China. Crop Science50, 1465–1473.

Fernandez-Marin B, Gulias J, Figueroa C M, Iniguez C, Clemente-Moreno M J, Nunes-Nesi A, Fernie A R, Cavieres L A, Bravo L A, García-Plazaola J I, Gago J. 2020. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. The Plant Journal101, 979–1000.

Figueiredo P G, Bicudo S J, Chen S, Fernandes A M, Tanamati F Y, Djabou-Fondjo A S M. 2017. Effects of tillage options on soil physical properties and cassava-dry-matter partitioning. Field Crops Research204, 191–198.

Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects990, 87–92.

Grum B, Assefa D, Hessel R, Woldearegay K, Ritsema C J, Aregawi B, Geissen V. 2017. Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia. Agricultural Water Management193, 153–162.

Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Aziiba E A, Zhang X J. 2021. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Frontiers in Plant Science12, 726568.

Hafeez A, Ali S, Ma X, Tung S A, Shah A N, Ahmad S, Chattha M S, Souliyanonh B, Zhang Z, Yang G Z. 2019. Photosynthetic characteristics of boll subtending leaves are substantially influenced by applied K to N ratio under the new planting model for cotton in the Yangtze River Valley. Field Crops Research237, 43–52.

Hartzell S, Bartlett M S, Porporato A. 2017. The role of plant water storage and hydraulic strategies in relation to soil moisture availability. Plant and Soil419, 503–521.

Hassan I A. 2006. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. Photosynthetica44, 312–315.

Hu F L, Gan Y T, Cui H Y, Zhao C, Feng F X, Yin W, Chai Q. 2016. Intercropping maize and wheat with conservation agriculture principles improves water harvesting and reduces carbon emissions in dry areas. European Journal of Agronomy74, 9–17.

Ibrahim M F M, El-Samad G A, Ashour H, El-Sawy A M, Hikal M, Elkelish A, El-Gawad H A, El-Yazied A A, Hozzein W N, Farag R. 2020. Regulation of agronomic traits, nutrient uptake, osmolytes and antioxidants of maize as influenced by exogenous potassium silicate under deficit irrigation and semiarid conditions. Agronomy10, 1212.

Jia Q, Zhang H, Wang J, Xiao X, Hou F. 2020. Planting practices and mulching materials improve maize net ecosystem C budget, global warming potential and production in semi-arid regions. Soil and Tillage Research207, 104850.

Ket P, Oeurng C, Degré A. 2018. Estimating soil water retention curve by inverse modelling from combination of in situ dynamic soil water content and soil potential data. Soil Systems2, 55.

Khan M N, Lan Z L, Sial T A, Zhao Y, Haseeb A, Zhang J G, Zhang A F, Hill R L. 2019. Straw and biochar effects on soil properties and tomato seedling growth under different moisture levels. Archives of Agronomy and Soil Science65, 1704–1719.

Lamptey S, Li L L, Xie J H, Coulter J A. 2020. Tillage system affects soil water and photosynthesis of plastic-mulched maize on the semiarid Loess Plateau of China. Soil and Tillage Research196, 104479.

Li G H, Zhao B, Dong S, Zhang J W, Liu P, Lu W P. 2020. Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agricultural Water Management227, 105834.

Li R, Chai S X, Chai Y W, Li Y W, Chang L, Cheng H B. 2022. Straw strip mulching A sustainable technology for saving water and improving efficiency in dryland winter wheat production. Journal of Integrative Agriculture21, 3556–3568.

Liu B, Xia H, Jiang C C, Riaz M, Yang L, Chen Y F, Fan X P, Xia X G. 2022. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice–wheat rotation of middle China. Science of the Total Environment841, 156608.

López F J, Pastrana P, Casquero P A. 2018. Soil physical properties and crop response in direct seeding of spring barley as affected by wheat straw level. Journal of Soil and Water Conservation74, 51–58.

Machiani M A, Javanmard A, Morshedloo M R, Janmohammadi M, Maggi F. 2021. Funneliformis mosseae application improves the oil quantity and quality and eco-physiological characteristics of soybean (Glycine max L.) under water stress conditions. Journal of Soil Science and Plant Nutrition21, 3076–3090.

Maes W H, Achten W M J, Reubens B, Raes D, Samson R, Muys B. 2009. Plant–water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments73, 877–884.

Meyer M, Diehl D, Schaumann G E, Muñoz K. 2021. Multiannual soil mulching in agriculture: Analysis of biogeochemical soil processes under plastic and straw mulches in a 3-year field study in strawberry cultivation. Journal of Soils and Sediments21, 3733–3752.

Nobel P S. 2005. Photochemistry of photosynthesis. Physicochemical and Environmental Plant Physiology. 3rd ed. pp. 219–266.

Peltonen-Sainio P, Forsman K, Poutala T. 1997. Crop management effects on pre- and post-anthesis changes in leaf area index and leaf area duration and their contribution to grain yield and yield components in spring cereals. Journal of Agronomy and Crop Science179, 47–61.

Ramteke P R, Vashisht B B, Sharma S, Jalota S K. 2022. Assessing and ranking influence of rates of rice (Oryza sativa L.) straw incorporation and N fertilizer on soil physicochemical properties and wheat (Triticum aestivum L.) yield in rice–wheat system. Journal of Soil Science and Plant Nutrition22, 515–526.

Rathod G R, Rakesh P, Viswanathan C, Vijay P, Neelu J, Pal S M, Kumar M P. 2022. Deeper root system architecture confers better stability to photosynthesis and yield compared to shallow system under terminal drought stress in wheat (Triticum aestivum L.). Plant Physiology Reports27, 250–259.

Reynolds J F, Smith D M, Lambin E F, Turner B L, Mortimore M, Batterbury S P, Downing T E, Dowlatabadi H, Fernández R J, Herrick J E, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre F T, Ayarza M, Walker B. 2007. Global desertification: Building a science for dryland development. Science316, 847–851.

Sarkar S, Paramanick M, Goswami S B. 2007. Soil temperature, water use and yield of yellow sarson (Brassica napus L. var. glauca) in relation to tillage intensity and mulch management under rainfed lowland ecosystem in eastern India. Soil and Tillage Research93, 94–101.

Schimel D S. 2010. Drylands in the earth system. Science327, 418–419.

Shareef M, Gui D W, Zeng F J, Waqas M, Zhang B, Iqbal H. 2018. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China. Agricultural Water Management206, 1–10.

Silva-Pérez V, Faveri J D, Molero G, Deery D M, Furbank R T. 2019. Genetic variation for photosynthetic capacity and efficiency in spring wheat. Journal of Experimental Botany71, 2299–2311.

Slattery R A, VanLoocke A, Bernacchi C J, Zhu X G, Ort D R. 2017. Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Frontiers in Plant Science8, 549.

Soares M B, Milori D M B P, Alleoni L R F. 2021. How does the biochar of sugarcane straw pyrolysis temperature change arsenic and lead availabilities and the activity of the microorganisms in a contaminated sediment? Journal of Soils and Sediments21, 3185–3200.

Wang J, Ghimire R, Fu X, Sainju U M, Liu W. 2018. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management206, 95–101.

Wang J J, Hussain S, Sun X, Zhang P, Javed T, Dessoky E S, Ren X L, Chen X L. 2022. Effects of nitrogen application rate under straw incorporation on photosynthesis, productivity and nitrogen use efficiency in winter wheat. Frontiers in Plant Science13, 862088.

Wang L, Chen R S, Han C T, Wang X Q, Liu G H, Song Y X, Yang Y, Liu J F, Liu Z W, Liu X J, Guo S H, Zheng Q. 2019. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China. Environmental Earth Sciences78, 284.

Wang W Y, Akhtar K, Ren G X, Yang G H, Feng Y Z, Yuan L Y. 2019. Impact of straw management seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Science of the Total Environment652, 471–482.

Wu Y, Bian S F, Liu Z M, Wang L C, Wang Y J, Xu W H, Zhou Y. 2021. Drip irrigation incorporating water conservation measures: Effects on soil water–nitrogen utilization, root traits and grain production of spring maize in semi-arid areas. Journal of Integrative Agriculture20, 3127–3142.

Wu W J, Lin Z, Zhu X P, Li G Y, Zhang W J, Chen Y J, Ren L, Luo S W, Lin H H, Zhou H K, Huang Y X, Yang R C, Xie Y C, Wang X Z, Zhen Z, Zhang D Y. 2022. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. European Journal of Soil Biology109, 103384.

Yan F J, Sun Y J, Xu H, Yin Y Z, Wang H Y, Wang C Y, Guo C C, Yang Z Y, Sun Y Y, Ma J. 2018. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy and Water Environment16, 507–518.

Yin W, Chai Q, Guo Y, Fan H, Fan Z L, Hu F L, Zhao C, Yu A Z. 2021. The physiological and ecological traits of strip management with straw and plastic film to increase grain yield of intercropping wheat and maize in arid conditions. Field Crops Research271, 108242.

Yin W, Chai Q, Guo Y, Fan Z L, Hu F L, Fan H, Zhao C, Yu A Z, Coulter J A. 2020a. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions. Field Crops Research249, 107758.

Yin W, Chen G P, Feng F, Guo Y, Hu F L, Chen G D, Zhao C, Yu A Z, Chai Q. 2017. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Research204, 42–51.

Yin W, Yu A Z, Guo Y, Fan H, Hu F L, Fan Z L, Zhao C, Chai Q, Coulter J A. 2020b. Growth trajectories of wheat–maize intercropping with straw and plastic management in arid conditions. Agronomy Journal112, 2777–2790.

Yin W, Yu A Z, Guo Y, Wang Y F, Zhao C, Hu F L, Chai Q. 2018. Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat–maize intercropping systems. Field Crops Research229, 78–94.

Zhang H H, Sharifi M R, Nobel P S. 1995. Photosynthetic characteristics of sun versus shade plants of Encelia farinosa as affected by photosynthetic photon flux density, intercellular CO2 concentration, leaf water potential, and leaf temperature. Australian Journal of Plant Physiology22, 833–841.

[1] ZHANG Guang-xin, ZHAO De-hao, FAN Heng-zhi, LIU Shi-ju, LIAO Yun-cheng, HAN Juan. Combining controlled-release urea and normal urea with appropriate nitrogen application rate to reduce wheat stem lodging risk and increase grain yield and yield stability[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3006-3021.
[2] WANG Rui, WANG Ying, HU Ya-xian, DANG Ting-hui, GUO Sheng-li. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3003-3011.
No Suggested Reading articles found!