Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (4): 744-754    DOI: 10.1016/S2095-3119(15)61179-0
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms
CHEN Dan1, 2*, ZHANG Jin-peng1*, LIU Wei-hua1, WU Xiao-yang1, YANG Xin-ming1, LI Xiu-quan1, LU Yu-qing1, LI Li-hui1
1 National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture/Scientific Observation for Rice Germplasm Resources of Yunnan, Ministry of Agriculture/Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Kunming 650223, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The wheat grain number per spike (GNPS) is a major yield-limiting factor in wheat-breeding programs. Germplasms with a high GNPS are therefore valuable for increasing wheat yield potential. To investigate the molecular characteristics of young spike development in large-spike wheat germplasms with high GNPS, we performed gene and protein expression profiling analysis with three high-GNPS wheat lines (Pubing 3228, Pubing 3504 and 4844-12) and one low-GNPS control variety (Fukuho). The phenotypic data for the spikes in two growth seasons showed that the GNPS of the three large-spike wheat lines were significantly higher than that of the Fukuho control line. The Affymetrix wheat chip and isobaric tags for relative and absolute quantitation-tandam mass spectrometry (iTRAQ-MS/MS) technology were employed for gene and protein expression profiling analyses of young spike development, respectively, at the floret primordia differentiation stage. A total of 598 differentially expressed transcripts (270 up-regulated and 328 down-regulated) and 280 proteins (122 up- regulated and 158 down-regulated) were identified in the three high-GNPS lines compared with the control line. We found that the expression of some floral development-related genes, including Wknox1b, the AP2 domain protein kinase and the transcription factor HUA2, were up-regulated in the high-GNPS lines. The expression of the SHEPHERD (SHD) gene was up-regulated at both the transcript and protein levels. Overall, these results suggest that multiple regulatory pathways, including the CLAVATA pathway and the meristem-maintaining KNOX protein pathway, take part in the development of the high-GNPS phenotype in our wheat germplasms.

Abstract  The wheat grain number per spike (GNPS) is a major yield-limiting factor in wheat-breeding programs. Germplasms with a high GNPS are therefore valuable for increasing wheat yield potential. To investigate the molecular characteristics of young spike development in large-spike wheat germplasms with high GNPS, we performed gene and protein expression profiling analysis with three high-GNPS wheat lines (Pubing 3228, Pubing 3504 and 4844-12) and one low-GNPS control variety (Fukuho). The phenotypic data for the spikes in two growth seasons showed that the GNPS of the three large-spike wheat lines were significantly higher than that of the Fukuho control line. The Affymetrix wheat chip and isobaric tags for relative and absolute quantitation-tandam mass spectrometry (iTRAQ-MS/MS) technology were employed for gene and protein expression profiling analyses of young spike development, respectively, at the floret primordia differentiation stage. A total of 598 differentially expressed transcripts (270 up-regulated and 328 down-regulated) and 280 proteins (122 up- regulated and 158 down-regulated) were identified in the three high-GNPS lines compared with the control line. We found that the expression of some floral development-related genes, including Wknox1b, the AP2 domain protein kinase and the transcription factor HUA2, were up-regulated in the high-GNPS lines. The expression of the SHEPHERD (SHD) gene was up-regulated at both the transcript and protein levels. Overall, these results suggest that multiple regulatory pathways, including the CLAVATA pathway and the meristem-maintaining KNOX protein pathway, take part in the development of the high-GNPS phenotype in our wheat germplasms.
Keywords:  wheat       high grain number per spike       spike development        expression profiling  
Received: 03 March 2015   Accepted:
Fund: 

This work was supported by grants from the National Basic Research Program of China (973 Program, 2011CB100104), the National High-Tech R&D Program of China (2011AA100101), the National Natural Science Foundation of China (31071416), and the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02).

Corresponding Authors:  LI Li-hui, Tel: +86-10-62186670, Fax: +86-10-62189650, E-mail: lilihui@caas.cn      E-mail:  lilihui@caas.cn
About author:  CHEN Dan, Mobile: +86-13668714841, E-mail: xiaoyezi09@163.com; ZHANG Jin-peng, Mobile: +86-13269833221, E-mail: zhangjinpeng@caas.cn

Cite this article: 

CHEN Dan, ZHANG Jin-peng, LIU Wei-hua, WU Xiao-yang, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui. 2016. Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms. Journal of Integrative Agriculture, 15(4): 744-754.

Aukerman M J, Sakai H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell Online, 15, 2730–2741.

Barazesh S, McSteen P. 2008. Hormonal control of grass inflorescence development. Trends in Plant Science, 13, 656–662.

Bolduc N, Yilmaz A, Mejia M, Morohashi K, O’Connor D, Grotewold E, Hake S. 2012. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes & Development, 26, 1685–1690.

Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S, Werr W. 2005. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development, 132, 1235–1245.

Brand U, Fletcher J C, Hobe M, Meyerowitz E M , Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 289, 617–619.

Chen D, Zhang J P, Wang J S, Yang X M, Liu W H, Gao A N, Li X Q, Li L H. 2012. Inheritance and availability of high grain number per spike in two wheat germplasm lines. Journal of Integrative Agriculture, 11, 1409–1416.

Chen X M, Meyerowitz E M. 1999. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway. Molecular Cell, 3, 349–360.

Chu H, Qian Q, Liang W, Yin C, Tan H,Yao X, Yuan Z, Yang J, Huang H, Luo D, Ma H, Zhang D. 2006. The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiology, 142, 1039–1052.

Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. 2002. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 298, 1238–1241.

Cui J M, Guo T C, Zhu Y J, Wang C Y, Ma X M. 2008. Spike of Wheat. China Agriculture Press, Beijing. pp. 22–33. (in Chinese)

Gardner J S, Hess W M, Trione E J. 1985. Development of the young wheat spike: A SEM study of Chinese spring wheat. American Journal of Botany, 72, 548–559.

Ishiguro S, Watanabe Y, Ito N, Nonaka H, Takeda N, Sakai T. 2002. SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. The EMBO Journal, 21, 898–908.

Jiang L, Qian Q, Mao L, Zhou Q, Zhai W. 2005. Characterization of the rice floral organ number mutant fon3. Journal of Integrative Plant Biology, 47, 100–106.

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109–D114.

Kepinski S. 2006. Integrating hormone signaling and patterning mechanisms in plant development. Current Opinion in Plant Biology, 9, 28–34.

Kerstetter R, Laudencia D, Smith L, Hake S. 1997. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development, 124, 3045–3054.

Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J. 2003. FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 130, 3841–3850.

Leibfried A, To J, Busch W, Stehling S, Kehle A, Demar M, Kieber J, Lohmann J. 2005. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438, 1172–1175.

Li L H, Yang X M, Li X Q, Dong Y C, Chen X M. 1998. Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Scientia Agricultura Sinica, 31, 1–5. (in Chinese)

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.

Luo J L, Ning T T, Sun Y F, Zhu J H, Zhu Y G, Lin Q S, Yang D C. 2009. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. Journal of Proteome Research, 8, 829–837.

Sablowski R. 2009. Cytokinin and WUSCHEL tie the knot around plant stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 16016–16017.

Sakakibara H. 2006. Cytokinins: Activity, biosynthesis, and translocation. Annual Review Plant Biology, 57, 431–449.

Scofield S, Murray J A. 2006. KNOX gene function in plant stem cell niches. Plant Molecular Biology, 60, 929–946.

Shani E, Yanai O, Ori N. 2006. The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology, 9, 484–489.

Suzaki T, Ohneda M, Toriba T, Yoshida A, Hirano H. 2009. FON2 SPARE1 redundantly regulates floral meristem maintenance with FLORAL ORGAN NUMBER2 in rice. PLoS Genetics, 5, e1000693.

Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H Y. 2004. The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat kinase orthologous to Arabidopsis CLAVATA1. Development, 131, 5649–5657.

Taguchi F, Yuan Z, Hake S, Jackson D. 2001. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes & Development, 15, 2755–2766.

Wang J S, Liu W H, Wang H, Li L H, Wu J, Yang X M, Li X Q, Gao A N. 2011. QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica, 177, 277–292.

Wu J, Yang X M, Wang H, Li H J, Li L H, Li X Q, Liu W H. 2006. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theoretical and Applied Genetics, 114, 13–20.

Yadav R K, Perales M, Gruel J, Girke T, Jönsson H, Reddy G V. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development, 25, 2025–2030.

Zadoks J C, Chang T T, Konzak C F. 1974. A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

Zhang D B, Zheng Y. 2014. Molecular control of grass inflorescence development. Annual Review of Plant Biology, 65, 553–578.

Zhang J P, Liu W H, Han H M, Song L Q, Bai L, Gao Z H, Zhang Y, Yang X M, Li X Q, Gao A N, Li L H. 2015. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics, doi: org/10.1016/j.ygeno.2015.04.003

Zhang J P, Liu W H, Yang X M, Gao A N, Li X Q, Wu X Y, Li L H. 2011. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Molecular Biology Reports, 38, 2337–2347.

Zhuang Q S. 2003. Chinese Wheat Improvement and Pedigree Analysis. China Agriculture Press, Beijing. pp. 497–506. (in Chinese)
[1] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[2] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[3] Wenjie Yang, Jie Yu, Yanhang Li, Bingli Jia, Longgang Jiang, Aijing Yuan, Yue Ma, Ming Huang, Hanbing Cao, Jinshan Liu, Weihong Qiu, Zhaohui Wang. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2421-2433.
[4] Yibo Hu, Feng Qin, Zhen Wu, Xiaoqin Wang, Xiaolong Ren, Zhikuan Jia, Zhenlin Wang, Xiaoguang Chen, Tie Cai. Heterogeneous population distribution enhances resistance to wheat lodging by optimizing the light environment[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2211-2226.
[5] Bingli Jiang, Wei Gao, Yating Jiang, Shengnan Yan, Jiajia Cao, Litian Zhang, Yue Zhang, Jie Lu, Chuanxi Ma, Cheng Chang, Haiping Zhang. Identification of P-type plasma membrane H+-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2164-2177.
[6] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[7] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[8] Xuan Li, Shaowen Wang, Yifan Chen, Danwen Zhang, Shanshan Yang, Jingwen Wang, Jiahua Zhang, Yun Bai, Sha Zhang.

Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1381-1392.

[9] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[10] Yingxia Dou, Hubing Zhao, Huimin Yang, Tao Wang, Guanfei Liu, Zhaohui Wang, Sukhdev Malhi.

The first factor affecting dryland winter wheat grain yield under various mulching measures: Spike number [J]. >Journal of Integrative Agriculture, 2024, 23(3): 836-848.

[11] Yonghui Fan, Boya Qin, Jinhao Yang, Liangliang Ma, Guoji Cui, Wei He, Yu Tang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Zhenglai Huang.

Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis [J]. >Journal of Integrative Agriculture, 2024, 23(2): 536-550.

[12] Wenqiang Wang, Xizhen Guan, Yong Gan, Guojun Liu, Chunhao Zou, Weikang Wang, Jifa Zhang, Huifei Zhang, Qunqun Hao, Fei Ni, Jiajie Wu, Lynn Epstein, Daolin Fu.

Creating large EMS populations for functional genomics and breeding in wheat [J]. >Journal of Integrative Agriculture, 2024, 23(2): 484-493.

[13] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[14] Wei Chen, Jingjuan Zhang, Xiping Deng.

Winter wheat yield improvement by genetic gain across different provinces in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 468-483.

[15] Qiuyan Yan, Linjia Wu, Fei Dong, Shuangdui Yan, Feng Li, Yaqin Jia, Jiancheng Zhang, Ruifu Zhang, Xiao Huang.

Subsoil tillage enhances wheat productivity, soil organic carbon and available nutrient status in dryland fields [J]. >Journal of Integrative Agriculture, 2024, 23(1): 251-266.

No Suggested Reading articles found!