Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (5): 1277-1286    DOI: 10.1016/S2095-3119(20)63400-1
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers
NIE Xing-hua1, 2, WANG Ze-hua2, LIU Ning-wei2, SONG Li2, YAN Bo-qian2, XING Yu1, 2, ZHANG Qing2, FANG Ke-feng3, ZHAO Yong-lian4, CHEN Xin5, WANG Guang-peng6, QIN Ling1, 2, CAO Qing-qin1, 2
1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, P.R.China
2 College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, P.R.China
3 College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, P.R.China
4 Chestnut Technology Experiment and Extension Station of Huairou District, Beijing 102206, P.R.China
5 Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai’an 271000, P.R.China
6 Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Changli 066600, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

中国板栗是世界上重要的坚果树种。我国板栗种质资源十分丰富,但在其资源利用与保护方面仍受到很大的限制。本研究利用18个荧光SSR标记对146份板栗资源进行了指纹图谱的构建,并解析了板栗品种群间的亲缘关系和筛选了板栗资源的核心种质。结果表明,每个基因座的平均等位基因数(Na)和多态性信息含量(PIC)分别为8.100和0.622,18个SSR标记表现出高的多态性。利用这些高效的标记,本试验成功构建了146份板栗资源的有唯一匹配的指纹图谱,并从中筛选出了7个SSR标记作为核心标记,实现了板栗资源的快速鉴定。对5个板栗品种群遗传关系进行研究,可知,中国板栗品种群被划分为3个类群,分别是类群I(华北品种群和西北品种群)、类群II(长江中下游品种群)和类群III(西南品种和东南品种群)。最后,我们选取了具有代表性的45个中国板栗资源作为核心种质。本研究为板栗资源的鉴定和品种群的亲缘关系提供了重要信息,为今后板栗的高效育种奠定基础。




Abstract  
Chinese chestnut is an important nut tree around the world.  Although the types of Chinese chestnut resources are abundant, resource utilization and protection of chestnut accessions are still very limited.  Here, we fingerprinted and determined the genetic relationships and core collections of Chinese chestnuts using 18 fluorescently labeled SSR markers generated from 146 chestnut accessions.  Our analyses showed that these markers from the tested accessions are highly polymorphic, with an average allele number (Na) and polymorphic information content (PIC) of 8.100 and 0.622 per locus, respectively.  Using these strongly distinguishing markers, we successfully constructed unique fingerprints for 146 chestnut accessions and selected seven of the SSR markers as core markers to rapidly distinguish different accessions.  Our exploration of the genetic relationships among the five cultivar groups indicated that Chinese chestnut accessions are divided into three regional type groups: group I (North China (NC) and Northwest China (NWC) cultivar groups), group II (middle and lower reaches of the Yangtze River (MLY) cultivar group) and group III (Southeast China (SEC) and Southwest China (SWC) cultivar groups).  Finally, we selected 45 core collection members which represent the most genetic diversity of Chinese chestnut accessions.  This study provides valuable information for identifying chestnut accessions and understanding the phylogenetic relationships among cultivar groups, which can serve as the basis for efficient breeding in the future.
Keywords:  Castanea mollissima        SSR markers        fingerprinting        phylogeny        core collections  
Received: 06 January 2020   Accepted:
Fund: This work was supported by grants from the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (IDHT20180509); the National Key Research & Development Program of China (2018YFD1000605) and the Opening Project of Beijing Key Laboratory of New Technology in Agricultural Application, China (kf2018024).
Corresponding Authors:  Correspondence QIN Ling, Tel/Fax: +86-10-80797229, E-mail: qinlingbac@126.com; CAO Qing-qin, E-mail: caoqingqin@sina.com    
About author:  NIE Xing-hua, E-mail: niexinghuabua@163.com;

Cite this article: 

NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin. 2021. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. Journal of Integrative Agriculture, 20(5): 1277-1286.


Alcaraz M, Hormaza J. 2007. Molecular characterization and genetic diversity in an avocado collection of accessions and local Spanish alleles combinations using SSRs. Hereditas, 144, 244–253.
Arias M, Hernandez M, Remondegui N, Huvenaars K, Van D P, Ritter E. 2016. First genetic linkage map of Taraxacum koksaghyz Rodin based on AFLP, SSR, COS and EST-SSR markers. Scientific Reports, 6(Suppl. 1), 1–10.
Bao C X, Huang H W. 2002. Analysis of genetic diversity and genetic relationships of Chinese chestnut. Acta Horticulturae Sinica, 29(Suppl. 1), 13–19. (in Chinese)
Brown A. 1989. Core collections: A practical approach to genetic resources management. Genome, 31, 818–824.
Cao Q Q, Xu Y, Feng Y Q, Zhang R J, Han Z D, Qin L. 2007. Comparison studies on extracting genomic DNA of chestnut (Castanea mollissima Bl.) by different methods. Chinese Agricultural Science Bulletin, 23, 160–163. (in Chinese)
Casasoli M, Mattioni C, Cherubini M, Villani F. 2001. A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theoretical and Applied Genetics, 102, 1190–1199.
Casasoli M, Pot D, Plomion C, Monteverdi M, Barreneche T, Lauteri M, Villani F. 2004. Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant, Cell & Environment, 27, 1088–1101.
Cuestas M I, Mattioni C, Martín L M, Osuna E V, Cherubini M, Martin M A. 2017. Functional genetic diversity of chestnut (Castanea sativa Mill.) populations from southern. Spain Forest Systems, 26, eSC06.
Donnelly P. 1995. Nonindependence of matches at different loci in DNA profiles: Quantifying the effect of close relatives on the match probability. Heredity, 75, 26–34.
FAO (Food and Agriculture Organization of the United Nations). 2019. FAOSTAT. [2019-1-1]. http://www.fao.org/faos%20tat/en/#home
Frankel O H. 1984. Genetic Perspectives of Germplasm Conservation. Cambridge University Press Cambridge, England. pp. 161–170.
Gu X Z, Cao Y C, Zhang Z H, Zhang B X, Zhao H, Zhang X M, Wang H P, Li X X, Wang L H. 2019. Genetic diversity and population structure analysis of Capsicum germplasm accessions. Journal of Integrative Agriculture, 18, 1312–1320.
Gur-Arie R, Cohen C J, Eitan Y, Shelef L, Hallerman E M, Kashi Y. 2000. Simple sequence repeats in Escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Research, 10, 62–71.
Hao F W, Zhang F R. 2014. Textual research on the cultivation history of Castanea mollissima in China. Ancient and Modern Agriculture, 3, 40–48. (in Chinese)
Hu J, Wang P, Su Y, Wang R, Li Q, Sun K. 2015. Microsatellite diversity, population structure, and core collection formation in melon germplasm. Plant Molecular Biology Reporter, 33, 439–447.
Huang H, Dane F, Norton J D. 1994. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theoretical and Applied Genetics, 88, 981–985.
Inoue E, Ning L, Hara H, Ruan S, Anzai H. 2009. Development of simple sequence repeat markers in Chinese chestnut and their characterization in diverse chestnut accessions. Journal of the American Society for Horticultural Science, 134, 610–617.
Jiang X, Tang D, Gong B. 2017. Genetic diversity and association analysis of Chinese chestnut (Castanea mollissima Blume) accessions based on SSR markers. Brazilian Journal of Botany, 40, 235–246.
Kubisiak T L, Hebard F V, Nelson C D, Zhang J S, Bernatzky R, Huang H W, Anagnostakis S L, Doudrick R L. 1997. Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea. Phytopathology, 87, 751–759.
Kubisiak T L, Nelson C D, Staton M E, Zhebentyayaeva T, Smith C, Olukolu B A, Fang C, Hebard F V, Anagnosakis S, Wheeler N, Sisco P H, Abbott A G, Sederoff R R. 2013. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes, 9, 557–571.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Lang P, Dane F, Kubisiak T L. 2006. Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-LF sequence data. Tree Genetics & Genomes, 2, 132–139.
Liu K, Muse S V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21, 2128–2129.
Liu S, Liu H, Wu A, Hou Y, An Y, Wei C. 2017. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding, 37, 93.
MoKay J. 1942. Self-sterility in the Chinese chestnut. Proceedings of the American Society for Floret Science, 41, 156–160.
Müller M, Nelson C D, Gailing O. 2018. Analysis of environment-marker associations in American chestnut. Forests, 9, 695.
Nei M, Tajima F, Tateno Y. 1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19, 153–170.
Olsson S, Seoane-Zonjic P, Bautista R, Claros M G, Gonzalez-martinez C, Scotti I, Scotti-saintagne C, Hardy O J, Heuertz M. 2017. Development of genomic tools in a widespread tropical tree, Symphonia globulifera L.f.: a new low-coverage draft genome, SNP and SSR markers. Molecular Ecology Resources, 17, 614–630.
Patzak J, Vrba L, Matoušek J. 2007. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.). Genome, 50, 15–25.
Payne J A, Jaynes R A, Kays S J. 1983. Chinese chestnut production in the United States: Practice, problems, and possible solutions. Economic Botany, 37, 187–200.
Peakall R, Smouse P E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.
Qin L, Liu D B, Fan C H. 2002. Study on the genetic diversity of natural chestnut of Shanxi. Chinese Journal of Biotechnology, 22, 970–974. (in Chinese)
Sardar S S, Pradhan K, Shukla R P, Saraswat R, Srivastava A, Jena S N, Das A B. 2016. In silico mining of EST-SSRs in Arachis hypogaea L. and their utilization for genetic structure and diversity analysis in accessions/breeding lines in Odisha, India. Molecular Breeding, 36, 49.
Selkoe K A, Toonen R J. 2006. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecology Letters, 9, 615–629.
Shashidhara G, Hema M, Koshy B, Farooqi A. 2003. Assessment of genetic diversity and identification of core collection in sandalwood germplasm using RAPDs. The Journal of Horticultural Science and Biotechnology, 78, 528–536.
Shi Z, Stösser R. 2005. Reproductive biology of Chinese chestnut (Castanea mollissima Blume). European Journal of Horticultural Science, 70, 96–103.
Singh M, Bisht I S, Kumar S, Dutta M , Bansal K C, Karale M, Sarker A, Amri A, Kumar S, Datta S K. 2014. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement. PLoS ONE, 9, e107781.
Sisco P H, Kubisiak T L, Casasoli M, Barreneche T, Kremer A, Clark C, Sederoff R R, Hebard F V, Villani F. 2005. An improved genetic map for Castanea mollissima/Castanea dentata and its relationship genetic map of Castanea sativa. Acta Horticulturae, 693, 491–495.
Smouse R P P, Peakall R. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research - An update. Bioinformatics, 28, 2537–2539.
Song Y, Fan L, Chen H, Zhang M, Ma Q, Zhang S, Wu J. 2014. Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia accessions by a genome-wide set of SSR markers. Scientia Horticulturae, 167, 5–16. (in Chinese)
Taberlet P, Luikart G. 1999. Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68, 41–55.
Tautz D, Renz M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12, 4127–4138.
Tan L Q, Peng M, Xu L Y, Wang L Y, Chen S X, Zou Y, Qi G N, Cheng H. 2015. Fingerprinting 128 Chinese clonal tea accessions using SSR markers provides new insights into their pedigree relationships. Tree Genetics & Genomes, 11, 90.
Tian H, Kang M, Li L, Yao X H, Huang H W. 2009. Genetic diversity in natural populations of Castanea mollissima inferred from nuclear SSR markers. Biodiversity Science, 17, 296–302.
UPOV (The International Union for the Protection). 2007. Guidelines for DNA-Profiling: Molecular Marker Selection and Database Construction/Bmt Guidelines (proj.9). Geneva, Switzerland. pp. 3–4.
Waits L P, Luikart G, Taberlet P. 2001. Estimating the probability of identity among alleles combinations in natural populations: cautions and guidelines. Molecular Ecology, 10, 249–256.
Wang L N, Gao W, Wang Q Y, Qu J B, Zhang J X, Huang C Y. 2019. Identification of commercial cultivars of Agaricus bisporus in China using genome-wide microsatellite markers. Journal of Integrative Agriculture, 18, 580–589.
Wang L X, Wan L X, Cheng X Z, Wang S H, Tian J. 2012. Analysis of an applied core collection of adzuki bean germplasm by using SSR markers. Journal of Integrative Agriculture, 11, 1601–1609.
Wright S. 1931. Evolution in Mendelian populations. Genetics, 16, 97.
Wu H, Wu Y W, Wu H M, Dong L M, Dai W S, Ye S Y, Shen D F, Zeng R Y. 2019. Determination of core collection in torreya based on seed traits and molecular markers. Molecular Plant Breeding, 17, 5513–5520. (in Chinese)
Xing Y, Liu Y, Zhang Q, Nie X H, Sun Y M, Zhang Z Y, Li H C, Fang K F, Wang G P, Huang H W, Bisseling T, Cao Q Q, Qin L. 2019. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). GigaScience, 8, giz112.
Xu C, Gao J, Du Z, Li D, Wang Z, Li Y, Pang X. 2016. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers. Scientific Reports, 6, 31503.
Yang Y, Guo Y, Zhang S H, Li Y, Zhang X F, Wang G P. 2017. The origin, evolution and classification of chestnut germplasm resources in China. Journal of Hebei Agricultural Sciences, 21, 25–28. (in Chinese)
Zhang Y H, Liu L, Liang W J, Zhang Y M. 2005. China Fruit Monograph: Chinese Chestnut and Chinese Hazelnut Volume. China Forestry Press, China. (in Chinese)
Zhou L D. 2005. Study on genetic diversity of germplasm resources in Castanea mollissima. Ph D thesis, China Agricultural University, China. (in Chinese)
[1] NI Chun-hui, HAN Bian, LIU Yong-gang, Maria MUNAWAR, LIU Shi-ming, LI Wen-hao, SHI Ming-ming, LI Hui-xia, PENG De-liang.

Diagnosis and characterization of the ribosomal DNA-ITS of potato rot nematode (Ditylenchus destructor) populations from Chinese medicinal herbs [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1763-1781.

[2] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[3] May Oo kHINE, brozenká MICHAELA, LIU Yan, Jiban kumar kUNDU, WANG Xi-feng. Molecular diversity of barley yellow dwarf virus-PAV from China and the Czech Republic[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2736-2745.
[4] ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato[J]. >Journal of Integrative Agriculture, 2019, 18(1): 9-24.
[5] HAN Yi-juan, ZHONG Zhen-hui, SONG Lin-lin, Olsson Stefan, WANG Zong-hua, LU Guo-dong. Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2018, 17(06): 1252-1267.
[6] MENG Yu-sha, ZHAO Ning, LI Hui, ZHAI Hong, HE Shao-zhen, LIU Qing-chang. SSR fingerprinting of 203 sweetpotato (Ipomoea batatas (L.) Lam.) varieties[J]. >Journal of Integrative Agriculture, 2018, 17(01): 86-93.
[7] LI Ming-na, LONG Rui-cai, FENG Zi-rong, LIU Feng-qi, SUN Yan, ZHANG Kun, KANG Jun-mei, WANG Zhen, CAO Shi-hao. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(01): 184-196.
[8] Kiflom Weldu Okubazghi, LI Xiao-na, CAI Xiao-yan, WANG Xing-xing, CHEN Hao-dong, ZHOU Zhong-li, WANG Chun-ying, WANG Yu-hong, LIU Fang, WANG Kun-bo. Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2402-2412.
No Suggested Reading articles found!