Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (2): 365-374    DOI: 10.1016/S2095-3119(20)63434-7
Special Issue: 玉米耕作栽培Maize Physiology · Biochemistry · Cultivation · Tillage
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Dynamics of maize grain drying in the high latitude region of Northeast China
CHU Zhen-dong1, 2, 3*, MING Bo2*, LI Lu-lu2, XUE Jun2, ZHANG Wan-xu1, HOU Liang-yu1, 2, XIE Rui-zhi2, HOU Peng2, WANG Ke-ru2, LI Shao-kun1, 2
1 Agricultural College, Shihezi University/Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Crops, Shihezi 832000, P.R.China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, P.R.China
3 Heilongjiang Bayi Agricultural University, Daqing 163000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米收获时籽粒含水率高是中国东北高纬度地区玉米生产面临的重要问题,这与品种熟期、区域气候条件以及栽培管理技术密切相关。延迟至冬季收获不能有效降低籽粒含水率以解决上述问题。2016至2017年,在黑龙江省大庆市试验点,连续观测了不同成熟型玉米品种生理成熟后籽粒田间干燥情况。采用两段线性模型对籽粒含水率与外界气象因子进行了阶段性分析。1)两段线性模型可以将各品种的籽粒干燥过程划分为两个不同斜率的单独线性干燥过程,且拟合精度良好2)快速干燥阶段,温度越高,干燥速度越快。而大气水汽压条件对慢速干燥过程的速率有影响。3)干燥速率由快速干燥阶段转为慢速干燥阶段时的籽粒含水率以及气象因子在品种和年份之间不一致,这两者并非是干燥速率明显变化的关键因素。但霜冻后,气温<0℃会显著降低籽粒干燥速率。4)早熟品种生育期短,干燥时间得以延长,籽粒含水率显著低于中晚熟品种。由于气温下降迅速,籽粒的干燥速率显著降低,中晚熟品种难以在田间干燥至较低的含水率水平。因此,更换早熟品种并实施相应的栽培技术是解决高含水率问题的可行途径。



Abstract  A high grain moisture content at harvest has been an important problem in the high latitude region of Northeast China, and it is closely related to the genotypes of varieties, local meteorological factors and planting management.  However, delayed harvest at a low temperature could not effectively reduce the grain moisture content.  In this study, we continuously observed the grain drying during the late stage of different maturing types of maize varieties in Daqing, Heilongjiang Province, China in 2016 and 2017.  A two-segment linear model was used to analyze the different stages of the drying processes: 1) Two-segment linear model fitting can divide the grain drying process of all varieties into two separate linear drying processes with different slopes.  2) During the rapid drying stage, the drying was faster at a higher temperature.  The rate of slow drying was influenced by air vapor pressure.  3) The moisture content and meteorological factors when the drying rate turns from one stage into the other were not consistent between varieties and years.  After entering the frost period, temperatures below 0°C will significantly reduce the rate of grain drying.  4) Due to the short growth period of early-maturing varieties, the drying time was prolonged, and the grain moisture content was lower than that of the mid-late maturing varieties.  Local meteorological conditions do not allow the drying of mid-late maturing varieties to achieve a lower moisture content.  When the temperature falls below 0°C, the drying rate of grain decreases markedly.  Therefore, one feasible way to solve the problem of high moisture content is to replace the early-maturing varieties and implement the corresponding cultivation techniques.
Keywords:  grain drying       maize       Northeast China       two-segment linear model  
Received: 02 March 2020   Accepted: 24 September 2020
Fund: This work was financially supported by the National Key Research and Development Program of China (2016YFD0300110), the National Natural Science Foundation of China (31971849), the China Agriculture Research System of MOF and MARA (CARS-02-25), and the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202004).
About author:  CHU Zhen-dong, E-mail: czdjym@163.com; MING Bo, E-mail: mingbo@caas.cn; Correspondence LI Shao-kun, Tel/Fax: +86-10-82108891, E-mail: lishaokun@caas.cn; WANG Ke-ru, Tel: +86-10-82108595, Fax: +86-10-82108891, E-mail: wangkeru@caas.cn * These authors contributed equally to this study.

Cite this article: 

CHU Zhen-dong, MING Bo LI Lu-lu, XUE Jun, ZHANG Wan-xu, HOU Liang-yu, XIE Rui-zhi, HOU Peng, WANG Ke-ru, LI Shao-kun . 2022. Dynamics of maize grain drying in the high latitude region of Northeast China. Journal of Integrative Agriculture, 21(2): 365-374.

Afuakwa J J, Crookston R K, Jones R J. 1984. Effect of temperature and sucrose availability on kernel black layer development in maize. Crop Science, 24, 285–288.
Borrás L, Westgate M E. 2006. Predicting maize kernel sink capacity early in development. Field Crops Research, 95, 223–233. 
Borrás L, Zinselmeier C, Senior M L, Westgate M E, Muszynski M G. 2009. Characterization of grain-filling patterns in diverse maize germplasm. Crop Science, 49, 999–1009.
Brooking I R. 1990. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Research, 23, 55–68.
Carter M W, Poneleit C G. 1973. Black layer maturity and filling period variation among inbred lines of corn (Zea mays L.). Crop Science, 13, 436–439.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. 2017. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Scientia Agricultura Sinica, 50, 2036–2043. (in Chinese)
Cloninger F D, Horrocks R D, Zuber M S. 1975. Effects of harvest date, plant density, and hybrid on corn grain quality. Agronomy Journal, 67, 693–695.
Daynard B T, Duncan W G. 1969. The black layer and grain maturity in corn. Crop Science, 9, 473–476. 
Daynard T B. 1972. Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn. Agronomy Journal, 64, 716–719.
Daynard T B, Kannenberg L W. 1976. Relationships between length of the actual, and effective grain filling periods and grain yield of corn. Canada Journal Plant Science, 56, 237–242.
Despotovic M, Nedic V, Despotovic D, Cvetanovic S. 2015. Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52, 1869–1880.
Earle R, Earle M. 2004. Unit operations in food processing. MSc thesis, The New ZealandInstitute of Food Science & Technology, Massey University, New Zealand. 
Elmore R, Abendroth L. 2010. In-field drydown rates and harvest. Retrieved from Iowa State University Digital Repository. [2012-10-27]. http://lib.dr.iastate.edu/cropnews/361
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P Wang K R, Li S K. 2018. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai rivers summer maize. Acta Agronomica Sinica, 44, 1755–1763. (in Chinese)
Jennings M V. 1974. Genotypic variability in grain quality of corn Zea mays L. Ph D thesis, Iowa State University, America.
Labuza T P, Altunakar L. 2007. Water Activity Prediction and Moisture Sorption Isotherms. Blackwell Publishing, Oxford, United Kingdom.
LI L L, Ming B, Xue J, Gao S, Wang K R, Xie R Z, Hou P, Li S K. 2021. Difference in corn kernel moisture content between pre- and post-harvest. Journal of Integrative Agriculture, 20, 1775–1782.
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K. 2018. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agronomica Sinica, 44, 1747–1754. (in Chinese)
Maiorano A, Fanchini D, Donatelli M. 2014. MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. European Journal of Agronomy, 59, 86–95.
Martinez-Feria R A, Licht M A, Ordóñez R A, Hatfield J L, Coulter J A, Archontoulis S V. 2019. Evaluating maize and soybean grain dry-down in the field with predictive algorithms and genotype-by-environment analysis. Scientific Reports, 9, 7167.
Newton S D, Eagles H A. 2006. Development traits affecting time to low ear moisture in maize. Plant Breeding, 106, 58–67.
Nielsen R L. 2011. Field drydown of mature corn grain. Corny news network (Purdue University). [2013-11-04]. http://www.kingcorn.org/news/timeless/GrainDrying.html
Plett S. 1994. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Canadian Journal of Plant Science, 74, 543–544.
Pordesimo L O, Saxton A M, Paul L E, Bellm R C. 2006. Investigation into grain dry matter loss during field drying of corn. In: The 2006 American Society of Agriculture and Biological Engineers Annual International Meeting. Portland.
Sala R G, Andrade F H, Westgate M E. 2007. Maize kernel moisture at physiological maturity as affected by the source–sink relationship during grain filling. Crop Science, 47, 711–716. 
Schmidt J L, Hallauer A R. 1966. Estimating harvest date of corn in the field. Crop Science, 6, 227–231.
Strohman R D, Yoerger R R. 1967. A new equilibrium moisture-content equation. Transactions of the ASAE, 10, 0675–0677.
Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A. 2008. Elementary study on kernel dry-down traits in earliest maturity maize hybrid. Chinese Agricultural Science Bulletin, 24, 161–168. (in Chinese)
Thomison P R, Mullen R W, Lipps P E, Doerge T, Geyer A B. 2011. Corn response to harvest date as affected by plant population and hybrid. Agronomy Journal, 103, 1765–1772.
Thompson T L, Peart R M, Foster G H. 1968. Mathematical simulation of corn drying - A new model. Transactions of the ASAE, 11, 0582–0586.
Wang K R, Li S K. 2017a. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultural Sinica, 50, 2027–2035. (in Chinese)
Wang K R, Li S K. 2017b. Progresses in research on grain broken rate by mechanical grain harvesting. Scientia Agricultura Sinica, 50, 2018–2026. (in Chinese)
Xiang K. 2011. Genetic analysis and measuring method development of kernel fast dry down rate in maize. Ph D thesis, Sichuan Agricultural University, Chengdu. (in Chinese)
Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K. 2017. Research progress on reduced lodging of high-yield and -density maize. Journal of Integrative Agriculture, 16, 2717–2725.

[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[5] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[8] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[9] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[10] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[11] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[12] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[13] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[14] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[15] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
No Suggested Reading articles found!