Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (12): 2834-2847    DOI: 10.1016/S2095-3119(17)61768-4
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Advances in pathogenesis of Streptococcus suis serotype 2
FAN Hong-jie1, 2
1 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Streptococcus suis is one of the major pathogens of swine streptococcosis.  Among them, the strongest virulence and highest rate of clinical isolation serotype is S. suis serotype 2 (SS2).  Moreover, SS2 is also an important zoonosis pathogen, which caused severe public health issues in China.  It has been reported that SS2 has several virulence factors, including muramidase released protein, extracellular factors, capsule, fibronectin-binding protein, enolase, hemolysin, small RNA, biofilm, two-component regulatory systems, STK/STP, etc., whose functions involved in adhesion, anti-phagocytosis, inflammatory pathway activation, invasion, etc.  Actually, SS2 has developed a variety of ways to escape from host immune system during evolution.  In particularly, capsule could resist phagocytosis through inhibiting sphingosine dependent immune cell recognition, which plays an important role in escaping host inflammation response; moreover, superoxide dismutase encoding by sodA enables SS2 escaping reactive oxygen species (ROS) in host immune cells; besides, binding complement factor h with Fhb could suppress the activation of complement alternative pathway and bactericidal effect.  And SS2 could also hinder the formation of neutrophil extracellular traps (NETs) to avoid trapping by swine neutrophils, while host immune globulin could be degraded by IgA1 hydrolase and IgM protease.  In addition, SS2 could escape host immune defense with the help of multiple transcriptional factors and micro-RNA.  So far, the pathogenesis of meningitis, arthritis caused by SS2 infection, is still unclear, and the virulence regulatory mechanism of phosphorylation, micro-RNA need to be further clarified.  Importantly, the study of interaction mechanism of pathogen and host contribute to further demonstration the pathogenesis of SS2.  
Keywords:  Streptococcus suis serotype 2        virulence factor        immune escape        pathogenesis  
Received: 18 May 2017   Accepted:

This study was supported by the National Key R&D Program of China (2017YFD0500203), the National Transgenic Major Program of China (2014ZX0800946B), the National Natural Science Foundation of China (31672574), the Special Fund for Agro-scientific Research in the Public Interest, China (201403054), the Jiangsu Agricultural Science and Technology Innovation Fund, China ([CX (16) 1028]), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD).

Corresponding Authors:  Correspondence FAN Hong-jie, Tel: +86-25-84396219, E-mail:   

Cite this article: 

FAN Hong-jie. 2017. Advances in pathogenesis of Streptococcus suis serotype 2. Journal of Integrative Agriculture, 16(12): 2834-2847.

Aranda J, Cortés P, Garrido M E, Fittipaldi N, Llagostera M, Gottschalk M, Barbé J. 2009. Contribution of the FeoB transporter to Streptococcus suis virulence. International Microbiology, 12, 137–141.

Aranda J, Garrido M E, Fittipaldi N, Cortes P, Llagostera M, Gottschalk M, Barbe J 2010. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Veterinary Microbiology, 144, 246–249.

Baums C G, Kaim U, Fulde M, Ramachandran G, Goethe R, Valentin-Weigand P. 2006. Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. Infection and Immunity, 74, 6154–6162.

Berthelot-Herault F, Gottschalk M, Morvan H, Kobisch M. 2005. Dilemma of virulence of Streptococcus suis: Canadian isolate 89–1591 characterized as a virulent strain using a standardized experimental model in pigs. Canadian Journal of Veterinary Research (Revue Canadienne de Recherche Veterinaire), 69, 236–240.

Bojarska A, Molska E, Janas K, Skoczynska A, Stefaniuk E, Hryniewicz W, Sadowy E. 2016. Streptococcus suis in invasive human infections in Poland: Clonality and determinants of virulence and antimicrobial resistance. European Journal of Clinical Microbiology & Infectious Diseases, 35, 917–925.

Bonifait L, Grenier D. 2011. The SspA subtilisin-like protease of Streptococcus suis triggers a pro-inflammatory response in macrophages through a non-proteolytic mechanism. BMC Microbiology, 11, 47.

Brantl S, Bruckner R. 2014. Small regulatory RNAs from low-GC Gram-positive bacteria. RNA Biology, 11, 443–456.

Brassard J, Gottschalk M, Quessy S. 2004. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Veterinary Microbiology, 102, 87-94.

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss D S, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science, 303, 1532–1535.

de Buhr N, Neumann A, Jerjomiceva N, von Kockritz-Blickwede M, Baums C G. 2014. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology, 160, 385–395.

de Buhr N, Reuner F, Neumann A, Stump-Guthier C, Tenenbaum T, Schroten H, Ishikawa H, Muller K, Beineke A, Hennig-Pauka I, Gutsmann T, Valentin-Weigand P, Baums C G, von Kockritz-Blickwede M. 2017. Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cellular Microbiology, 19, doi: 10.1111/cmi.12649

Cerca N, Jefferson K K, Oliveira R, Pier G B, Azeredo J. 2006. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infection and Immunity, 74, 4849–4855.

Chaput C, Boneca I G. 2007. Peptidoglycan detection by mammals and flies. Microbes and Infection, 9, 637–647.

Charland N, Kobisch M, Martineau-Doize B, Jacques M, Gottschalk M. 1996. Role of capsular sialic acid in virulence and resistance to phagocytosis of Streptococcus suis capsular type 2. FEMS Immunology and Medical Microbiology, 14, 195–203.

Costerton J W, Stewart P S, Greenberg E P. 1999. Bacterial biofilms: A common cause of persistent infections. Science, 284, 1318–1322.

Esgleas M, Li Y, Hancock M A, Harel J, Dubreuil J D, Gottschalk M. 2008. Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology, 154, 2668–2679.

Feng Y, Cao M, Shi J, Zhang H, Hu D, Zhu J, Zhang X, Geng M, Zheng F, Pan X, Li X, Hu F, Tang J, Wang C. 2012. Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture. Scientific Reports, 2, 710.

Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. 2014. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence, 5, 477–497.

Ferrando M L, Fuentes S, de Greeff A, Smith H, Wells J M. 2010. ApuA, a multifunctional alpha-glucan-degrading enzyme of Streptococcus suis, mediates adhesion to porcine epithelium and mucus. Microbiology, 156, 2818–2828.

Fittipaldi N, Sekizaki T, Takamatsu D, De La Cruz Dominguez-Punaro M, Harel J, Bui N K, Vollmer W, Gottschalk M. 2008a. Significant contribution of the pgdA gene to the virulence of Streptococcus suis. Molecular Microbiology, 70, 1120–1135.

Fittipaldi N, Sekizaki T, Takamatsu D, Harel J, Dominguez-Punaro Mde L, Von Aulock S, Draing C, Marois C, Kobisch M, Gottschalk M. 2008b. D-Alanylation of lipoteichoic acid contributes to the virulence of Streptococcus suis. Infection and Immunity, 76, 3587–3594.

Fuchs T A, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A. 2007. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology, 176, 231–241.

Fulde M, Willenborg J, De Greeff A, Benga L, Smith H E, Valentin-Weigand P, Goethe R. 2011. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology, 157, 572–582.

Fulde M, Willenborg J, Huber C, Hitzmann A, Willms D, Seitz M, Eisenreich W, Valentin-Weigand P, Goethe R. 2014. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis. Frontiers in Cellular and Infection Microbiology, 4, 107.

Garland M, Zeller K A, Shetty A K. 2016. Toxic shock syndrome due to methicillin-resistant Staphylococcus aureus infection after a pediatric scald burn. The American Journal of Emergency Medicine, 34, e1731–1732, e1735.

Ge J, Feng Y, Ji H, Zhang H, Zheng F, Wang C, Yin Z, Pan X, Tang J. 2009 Inactivation of dipeptidyl peptidase IV attenuates the virulence of Streptococcus suis serotype 2 that causes streptococcal toxic shock syndrome. Current Microbiology, 59, 248–255.

Gottschalk M, Segura M, Xu J. 2007. Streptococcus suis infections in humans: The Chinese experience and the situation in North America. Animal Health Research Reviews, 8, 29–45.

Gottschalk M, Xu J, Calzas C, Segura M. 2010. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen? Future Microbiology, 5, 371–391.

Gottschalk M, Xu J, Lecours M P, Grenier D, Fittipaldi N, Segura M. 2010. Streptococcus suis infections in humans: What is the prognosis for Western countries? (Part II). Clinical Microbiology Newsletter, 32, 97–102.

Gottschalk M G, Lacouture S, Daniel J. 1995. Characterization of Streptococcus suis capsular type 2 haemolysin. Microbiology, 141, 189–195.

de Greeff A, Buys H, van Alphen L, Smith H E. 2002. Response regulator important in pathogenesis of Streptococcus suis serotype 2. Microbial Pathogenesis, 33, 185–192.

Groves M D, Jordan D, Chapman T A, Jassim R A. 2015. Multilocus sequence typing of Australian Streptococcus suis type 2 by MALDI-TOF mass spectrometry analysis of PCR amplicons. Veterinary Microbiology, 177, 394–397.

Gruening P, Fulde M, Valentin-Weigand P, Goethe R. 2006. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. Journal of Bacteriology, 188, 361–369.

Han H, Liu C, Wang Q, Xuan C, Zheng B, Tang J, Yan J, Zhang J, Li M, Cheng H, Lu G, Gao G F. 2012. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology, 158, 1852–1866.

Hebert L, Courtin P, Torelli R, Sanguinetti M, Chapot-Chartier M P, Auffray Y, Benachour A. 2007. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infection and Immunity, 75, 5390–5398.

Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F. 2007. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathogens, 3, e102.

Houde M, Gottschalk M, Gagnon F, Van Calsteren M R, Segura M. 2012. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infection and Immunity, 80, 506–517.

Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, Yu J, Xiao J, Jin M. 2011. Complete genome sequence of Streptococcus suis serotype 14 strain JS14. Journal of Bacteriology, 193, 2375–2376.

Jiang H, Fan H, Lu C. 2009. Identification and distribution of putative virulent genes in strains of Streptococcus suis serotype 2. Veterinary Microbiology, 133, 309–316.

Jiang X, Yang Y, Zhou J, Zhu L, Gu Y, Zhang X, Li X, Fang W. 2016. Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis type 2. Frontiers in Cellular and Infection Microbiology, 6, 172.

Joiner K A, Brown E J, Frank M M. 1984. Complement and bacteria: Chemistry and biology in host defense. Annual Review of Immunology, 2, 461–491.

Jongerius I, Kohl J, Pandey M K, Ruyken M, Van Kessel K P, Van Strijp J A, Rooijakkers S H. 2007. Staphylococcal complement evasion by various convertase-blocking molecules. The Journal of Experimental Medicine, 204, 2461–2471.

Ju C, Lu C. 2012. Streptococcus suis serotype 2: Screening virulence related factors and identification and functional analysis of the cell wall hydrolase. Ph D thesis, Nanjing Agricultural University, China. (in Chinese)

Von Kockritz-Blickwede M, Nizet V. 2009. Innate immunity turned inside-out: Antimicrobial defense by phagocyte extracellular traps. Journal of Molecular Medicine, 87, 775–783.

Kouki A, Pieters R J, Nilsson U J, Loimaranta V, Finne J, Haataja S. 2013. Bacterial adhesion of Streptococcus suis to host cells and its inhibition by carbohydrate ligands. Biology, 2, 918–935.

Lachance C, Gottschalk M, Gerber P P, Lemire P, Xu J, Segura M. 2013. Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis. Infection and Immunity, 81, 1928–1939.

Lambris J D, Ricklin D, Geisbrecht B V. 2008. Complement evasion by human pathogens. Nature Reviews Microbiology, 6, 132–142.

Lecours M P, Fittipaldi N, Takamatsu D, Okura M, Segura M, Goyette-Desjardins G, Van Calsteren M R, Gottschalk M. 2012. Sialylation of Streptococcus suis serotype 2 is essential for capsule expression but is not responsible for the main capsular epitope. Microbes and Infection, 14, 941–950.

Lecours M P, Gottschalk M, Houde M, Lemire P, Fittipaldi N, Segura M. 2011. Critical role for Streptococcus suis cell wall modifications and suilysin in resistance to complement-dependent killing by dendritic cells. The Journal of Infectious Diseases, 204, 919–929.

Lemos J A, Luzardo Y, Burne R A. 2007. Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans. Journal of Bacteriology, 189, 1582–1588.

Lewis A L, Nizet V, Varki A. 2004. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proceedings of the National Academy of Sciences of the United States of America, 101, 11123–11128.

Li J, Tan C, Zhou Y, Fu S, Hu L, Hu J, Chen H, Bei W. 2011. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Veterinary Microbiology, 148, 99–104.

Li P, Liu J, Zhu L, Qi C, Bei W, Cai X, Sun Y, Feng S. 2010. VirA: a virulence-related gene of Streptococcus suis serotype 2. Microbial Pathogen, 49, 305–310.

Li Y, Martinez G, Gottschalk M, Lacouture S, Willson P, Dubreuil J D, Jacques M, Harel J. 2006. Identification of a surface protein of Streptococcus suis and evaluation of its immunogenic and protective capacity in pigs. Infection and Immunity, 74, 305–312.

Lopez-Mestanza C, Bolano-Navarro A, Sanchez-Sanchez A, Aldea-Mansilla C. 2016. First case in Spain of septic shock by Streptococcus suis possible food-borne. Medicina Intensiva, 40, 516–518.

Lü Q, Hao H, Bi L, Zheng Y, Zhou X, Jiang Y. 2014. Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein and Cell, 5, 261–264.

Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. 2017. Streptococcus suis serotype 2 biofilms inhibit the formation of neutrophil extracellular traps. Frontiers in Cellular and Infection Microbiology, 7, 86.

Melnyk J E, Mohanan V, Schaefer A K, Hou C W, Grimes C L. 2015. Peptidoglycan modifications tune the stability and function of the innate immune receptor Nod2. Journal of the American Chemical Society, 137, 6987–6990.

Musyoki A M, Shi Z, Xuan C, Lu G, Qi J, Gao F, Zheng B, Zhang Q, Li Y, Haywood J, Liu C, Yan J, Shi Y, Gao G. 2016. Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from Gram-positive bacterium Streptococcus suis. Proceedings of the National Academy of Sciences of the United States of America, 113, 13869–13874.

Myers P R, Parker J L, Tanner M A, Adams H R. 1994. Effects of cytokines tumor necrosis factor alpha and interleukin 1 beta on endotoxin-mediated inhibition of endothelium-derived relaxing factor bioactivity and nitric oxide production in vascular endothelium. Shock, 1, 73–78.

Neuhaus F C, Baddiley J. 2003. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiology and Molecular Biology Reviews, 67, 686–723.

Ohtani K, Hirakawa H, Tashiro K, Yoshizawa S, Kuhara S, Shimizu T. 2010. Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe, 16, 258–264.

Padler-Karavani V, Hurtado-Ziola N, Chang Y C, Sonnenburg J L, Ronaghy A, Yu H, Verhagen A, Nizet V, Chen X, Varki N, Varki A, Angata T. 2014. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. The FASEB Journal, 28, 1280–1293.

Pan X, Ge J, Li M, Wu B, Wang C, Wang J, Feng Y, Yin Z, Zheng F, Cheng G, Sun W, Ji H, Hu D, Shi P, Feng X, Hao X, Dong R, Hu F, Tang J. 2009. The orphan response regulator CovR: A globally negative modulator of virulence in Streptococcus suis serotype 2. Journal of Bacteriology, 191, 2601–2612.

Percy M G, Grundling A. 2014. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annual Review of Microbiology, 68, 81–100.

Pian Y, Gan S, Wang S, Guo J, Wang P, Zheng Y, Cai X, Jiang Y, Yuan Y. 2012. Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infection and Immunity, 80, 2402–2413.

Quessy S, Dubreuil J D, Caya M, Higgins R. 1995. Discrimination of virulent and avirulent Streptococcus suis capsular type 2 isolates from different geographical origins. Infection and Immunity, 63, 1975–1979.

Rangel A, Steenbergen S M, Vimr E R. 2016. Unexpected diversity of Escherichia coli sialate O-acetyl esterase nans. Journal of Bacteriology, 198, 2803–2809.

Rooijakkers S H, Milder F J, Bardoel B W, Ruyken M, Van Strijp J A, Gros P. 2007. Staphylococcal complement inhibitor: Structure and active sites. The Journal of Immunology, 179, 2989–2998.

Rooijakkers S H, Ruyken M, Roos A, Daha M R, Presanis J S, Sim R B, Van Wamel W J, Van Kessel K P, Van Strijp J A. 2005. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunology, 6, 920–927.

Roy D, Grenier D, Segura M, Mathieu-Denoncourt A, Gottschalk M. 2016. Recruitment of factor H to the Streptococcus suis cell surface is multifactorial. Pathogens, 5, 47.

Schmid S, O’Connor M, Okwumabua O. 2011. The pathogenicity island-like DNA segment associated with Chinese outbreak strain of Streptococcus suis serotype 2 is absent in the United States isolates. International Journal of Molecular Epidemiology and Genetics, 2, 56–60.

Schneewind O, Missiakas D. 2014. Lipoteichoic acids, phosphate-containing polymers in the envelope of Gram-positive bacteria. Journal of Bacteriology, 196, 1133–1142.

Seele J, Beineke A, Hillermann L M, Jaschok-Kentner B, Von Pawel-Rammingen U, Valentin-Weigand P, Baums C G. 2015. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is involved in complement evasion. Veterinary Research, 46, 45.

Seele J, Singpiel A, Spoerry C, Von Pawel-Rammingen U, Valentin-Weigand P, Baums C G. 2013. Identification of a novel host-specific IgM protease in Streptococcus suis. Journal of Bacteriology, 195, 930–940.

Segura M. 2009. Streptococcus suis: An emerging human threat. The Journal of Infectious Diseases, 199, 4–6.

Segura M, Vadeboncoeur N, Gottschalk M. 2002. CD14-dependent and -independent cytokine and chemokine production by human THP-1 monocytes stimulated by Streptococcus suis capsular type 2. Clinical and Experimental Immunology, 127, 243–254.

Seitz M, Beineke A, Singpiel A, Willenborg J, Dutow P, Goethe R, Valentin-Weigand P, Klos A, Baums C G. 2014. Role of capsule and suilysin in mucosal infection of complement-deficient mice with Streptococcus suis. Infection and Immunity, 82, 2460–2471.

Serhir B, Higgins R, Foiry B, Jacques M. 1993. Detection of immunoglobulin-g-binding proteins in Streptococcus suis. Journal of General Microbiology, 139, 2953–2958.

Smith H E, Damman M, van der Velde J, Wagenaar H J, Wisselink N, Stockhofe-Zurwieden N, Smits M A. 1999. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infection and immunity, 67, 1750–1756.

Song L, Zhou H, Cai X, Li C, Liang J, Jin C. 2011. NeuA O-acetylesterase activity is specific for CMP-activated O-acetyl sialic acid in Streptococcus suis serotype 2. Biochemical and Biophysical Research Communications, 410, 212–217.

Storz G, Vogel J, Wassarman K M. 2011. Regulation by small RNAs in bacteria: Expanding frontiers. Molecular Cell, 43, 880–891.

Sukhithasri V, Nisha N, Biswas L, Kumar V A, Biswas R. 2013. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406.

Tan C, Fu S, Liu M, Jin M, Liu J, Bei W, Chen H. 2008. Cloning, expression and characterization of a cell wall surface protein, 6-phosphogluconate-dehydrogenase, of Streptococcus suis serotype 2. Veterinary Microbiology, 130, 363–370.

Tang J, Bai W, Zhu J. 2004. Epidemiological and pathogenic study on the outbreak of toxic shock syndrome and meningocephalitis caused by swine streptococcus. Acta Academiae Medicinae Militaris Tertiae, 23, 1292–1295.

Tang Y. 2012. Functinal analysis of Sortases, CcpA and SodA of Streptococcus suis type 2 in relation to pathogenicity. Ph D

thesis, Zhejiang University, China. (in Chinese)

Tang Y, Zhang X, Wu W, Lu Z, Fang W. 2012. Inactivation of the sodA gene of Streptococcus suis type 2 encoding superoxide dismutase leads to reduced virulence to mice. Veterinary Microbiology, 158, 360–366.

Tenenbaum T, Seitz M, Schroten H, Schwerk C. 2016. Biological activities of suilysin: Role in Streptococcus suis pathogenesis. Future Microbiology, 11, 941–954.

Tilanus A M, De Geus H R, Rijnders B J, Dwarkasing R S, Van Der Hoven B, Bakker J. 2010. Severe group A streptococcal toxic shock syndrome presenting as primary peritonitis: A case report and brief review of the literature. International Journal of Infectious Diseases, 14, e208–e212.

Tkalcevic J, Novelli M, Phylactides M, Iredale J P, Segal A W, Roes J. 2000. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity, 12, 201–210.

Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H, Balestrino D, Loh E, Gripenland J, Tiensuu T, Vaitkevicius K, Barthelemy M, Vergassola M, Nahori M A, Soubigou G, Regnault B, Coppee J Y, Lecuit M, Johansson J, Cossart P. 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature, 459, 950–956.

Vanier G, Segura M, Gottschalk M. 2007. Characterization of the invasion of porcine endothelial cells by Streptococcus suis serotype 2. Canadian Journal of Veterinary Research (Revue Canadienne de Recherche Veterinaire), 71, 81–89.

Vanier G, Sekizaki T, Dominguez-Punaro M C, Esgleas M, Osaki M, Takamatsu D, Segura M, Gottschalk M. 2008. Disruption of srtA gene in Streptococcus suis results in decreased interactions with endothelial cells and extracellular matrix proteins. Veterinary Microbiology, 127, 417–424.

Vecht U, Wisselink H J, Jellema M L, Smith H E. 1991. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infection and Immunity, 59, 3156–3162.

Vollmer W, Tomasz A. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. The Journal of Biological Chemistry, 275, 20496–20501.

Wang H, Tang D, Zeng Z, Luo X, Li C, Hao F. 2014. Epidemiological investigation of major bacterial diseases in scale pig farms. Animal Husbandry and Veterinary Medicine, 9, 98–101. (in Chinese)

Wang J, Feng Y, Wang C, Zheng F, Hassan B, Zhi L, Li W, Yao Y, He E, Jiang S, Tang J. 2017. Genome-wide analysis of a avirulent and reveal the strain induces pro-tective immunity against challenge with virulent Streptococcus suis serotype 2.

BMC Microbiology, 17, 67.

Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y. 2015. Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis. Frontiers in Microbiology, 6, 1001.

Wang K, Lu C. 2007. Adhesion activity of glyceraldehyde-3-phosphate dehydrogenase in a Chinese Streptococcus suis type 2 strain. Berliner und Munchener Tierarztliche Wochenschrift, 120, 207–209.

Wang Y, Zhang W, Wu Z, Zhu X, Lu C. 2011. Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Veterinary Microbiolog, 152, 151–160.

Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S, Henriques-Normark B. 2007a. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cellular Microbiology, 9, 1162–1171.

Wartha F, Beiter K, Normark S, Henriques-Normark B. 2007b. Neutrophil extracellular traps: Casting the NET over pathogenesis. Current Opinion in Microbiology, 10, 52–56.

Waters L S, Storz G. 2009. Regulatory RNAs in bacteria. Cell, 136, 615–628.

Watters C, Fleming D, Bishop D, Rumbaugh K P. 2016. Host responses to biofilm. Progress in Molecular Biology and Translational Science, 142, 193–239.

Wei Z, Li R, Zhang A, He H, Hua Y, Xia J, Cai X, Chen H, Jin M. 2009. Characterization of Streptococcus suis isolates from the diseased pigs in China between 2003 and 2007. Veterinary Microbiology, 137, 196–201.

Wichgers S P J, Rebel J M, Smits M A, van Putten J P, Smith H E. 2011. TroA of Streptococcus suis is required for manganese acquisition and full virulence. Journal of Bacteriology, 193, 5073–5080.

Wilson T L, Jeffers J, Rapp-Gabrielson V J, Martin S, Klein L K, Lowery D E, Fuller T E. 2007. A novel signature-tagged mutagenesis system for Streptococcus suis serotype 2. Veterinary Microbiolog, 122, 135–145.

Wu Z, Wu C, Shao J, Zhu Z, Wang W, Zhang W, Tang M, Pei N, Fan H, Li J, Yao H, Gu H, Xu X, Lu C. 2014. The Streptococcus suis transcriptional landscape reveals adaptation mechanisms in pig blood and cerebrospinal fluid. RNA, 20, 882–898.

Xiao G, Tang H, Zhang S, Ren H, Dai J, Lai L, Lu C, Yao H, Fan H, Wu Z. 2017. Streptococcus suis small RNA rss04 contributes to the induction of meningitis by regulating capsule synthesis and by inducing biofilm formation in a mouse infection model. Veterinary Microbiology, 199, 111–119.

Yang C, Chen B, Zhao J, Lin L, Han L, Pan S, Fu L, Jin M, Chen H, Zhang A. 2015a. TREM-1 signaling promotes host defense during the early stage of infection with highly pathogenic Streptococcus suis. Infection and Immunity, 83, 3293–3301.

Yang C, Zhao J, Lin L, Pan S, Fu L, Han L, Jin M, Zhou R, Zhang A. 2015b. Targeting TREM-1 signaling in the presence of antibiotics is effective against streptococcal toxic-shock-like syndrome (STSLS) caused by Streptococcus suis. Frontiers in Cellular and Infection Microbiology, 5, doi: 10.3389/fcimb.2015.00079

Yin S, Li M, Rao X, Yao X, Zhong Q, Wang M, Wang J, Peng Y, Tang J, Hu F, Zhao Y. 2016. Subtilisin-like protease-1 secreted through type IV secretion system contributes to high virulence of Streptococcus suis 2. Scientific Reports, 6, srep27369.

Yuan Z Z, Yan X J, Zhang A D, Chen B, Shen Y Q, Jin L M. 2013. Molecular mechanism by which surface antigen HP0197 mediates host cell attachment in the pathogenic bacteria Streptococcus suis. The Journal of Biological Chemistry, 288, 956–963.

Zeng Q, Lu C. 2003. Fusion and apoptosis of epithelial cells induced by muramidase released protein of Streptococcus suis type 2. Acta Microbiologica Sinica, 43, 407–412. (in Chinese)

Zhang A, Chen B, Li R, Mu X, Han L, Zhou H, Chen H, Meilin J. 2009. Identification of a surface protective antigen, HP0197 of Streptococcus suis serotype 2. Vaccine, 27, 5209–5213.

Zhang A, Mu X, Chen B, Han L, Chen H, Jin M. 2011. IgA1 protease contributes to the virulence of Streptococcus suis. Veterinary Microbiolog, 148, 436–439.

Zhang H, Ma Z, Li Y, Zheng J, Yi L, Fan H, Lu C. 2013. Identification of a novel collagen type I-binding protein from Streptococcus suis serotype 2. The Veterninary Journal, 197, 406–414.

Zhao J, Lin L, Fu L, Han L, Zhang A. 2016. Neutrophil extracellular Taps play an important role in clearance of Streptococcus suis in vivo. Microbiology and Immunology, 60, 228–233.

Zhao J, Pan S, Lin L, Fu L, Yang C, Xu Z, Wei Y, Jin M, Zhang A. 2015. Streptococcus suis serotype 2 strains can induce the formation of neutrophil extracellular traps and evade trapping. FEMS Microbiology Letters, 362, fnv022.

Zhao Y, Liu G, Li S, Wang M, Song J, Wang J, Tang J, Li M, Hu F. 2011. Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. The Journal of Infectious Diseases, 204, 274–281.

Zheng F, Ji H, Cao M, Wang C, Feng Y, Li M, Pan X, Wang J, Qin Y, Hu F, Tang J. 2011. Contribution of the Rgg transcription regulator to metabolism and virulence of Streptococcus suis serotype 2. Infection and Immunity, 79, 1319–1328.

Zhu J, Xiang L, Jiang F, Zhang Z. 2016. Equilibrium of sortase A dimerization on Staphylococcus aureus cell surface mediates its cell wall sorting activity. Experimental Biology and Medicine, 241, 90–100.

Zinkernagel A S, Timmer A M, Pence M A, Locke J B, Buchanan J T, Turner C E, Mishalian I, Sriskandan S, Hanski E, Nizet V. 2008. The IL-8 protease SpyCEP/ScpC of group A Streptococcus promotes resistance to neutrophil killing. Cell Host & Microbe, 4, 170–178.

Zipfel P F, Wurzner R, Skerka C. 2007. Complement evasion of pathogens: Common strategies are shared by diverse organisms. Molecular Immunology, 44, 3850–3857.

Zuniga M, Perez G, Gonzalez-Candelas F. 2002. Evolution of arginine deiminase (ADI) pathway genes. Molecular Phylogenetics and Evolution, 25, 429–444.
[1] TANG Qiong, ZHENG Xiao-dong, GUO Jun, YU Ting. Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways[J]. >Journal of Integrative Agriculture, 2022, 21(3): 697-709.
[2] ZOU Zhong, GONG Wen-xiao, HUANG Kun, SUN Xiao-mei, JIN Mei-lin. Regulation of influenza virus infection by microRNAs[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1421-1427.
[3] WANG Xiao-dong, BI Wei-shuai, GAO Jing, YU Xiu-mei, WANG Hai-yan, LIU Da-qun. Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2468-2476.
[4] YANG Li-ming, WANG Yi-hao, PENG Yu, MIN Jiang-tao, HANG Su-qin, ZHU Wei-yun. Genomic characterization and antimicrobial susceptibility of bovine intrauterine Escherichia coli and its relationship with postpartum uterine infections[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1345-1354.
No Suggested Reading articles found!