Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (3): 772-782    DOI: 10.1016/S2095-3119(20)63292-0
Section 3: Biological and ecological characteristics Advanced Online Publication | Current Issue | Archive | Adv Search |
Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China
YANG Xian-ming1*, SONG Yi-fei1, 2*, SUN Xiao-xu1, 3, SHEN Xiu-jing1, 2, WU Qiu-lin1, ZHANG Hao-wen1, ZHANG Dan-dan1, ZHAO Sheng-yuan1, LIANG Ge-mei1, WU Kong-ming1 
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 College of Plant Protection, Southwest University, Chongqing 400716, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

草地贪夜蛾自2018年12月11日入侵云南后已在我国定殖并形成了周年繁殖区,春夏季将以周年繁殖区为起点向北迁飞。明确其周年发生区域,对指导我国草地贪夜蛾的监测预警及科学防控工作具有重要意义。对冬季草地贪夜蛾在我国热带和亚热带地区的种群动态研究表明,幼虫虫口密度与冬季温度显著正相关,热带地区草地贪夜蛾幼虫种群密度最高,其次为南亚热带地区,而中亚热带北部地区和北亚热带地区未见草地贪夜蛾幼虫发生。研究结果指出草地贪夜蛾在我国1月份等温线10℃以南的热带和南亚热带地区可周年繁殖,该区域包括海南省和台湾省,以及福建、广东、广西、贵州和云南五省的南部区域。该研究明确了草地贪夜蛾的在中国的周年繁殖区域,为该虫区域性监测预警及防控提供了重要依据。




Abstract  
Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith), has become an important pest in Chinese agricultural systems since its invasion on 11 December 2018.  After its establishment, FAW months in the year-round breeding region have become the main source population migrating to other areas in China.  Field investigations were conducted in tropical and subtropical regions to improve understanding of its year-round breeding area in China.  The results showed that FAW larval density was significantly correlated with the seasonal temperature of the location surveyed.  The FAW larvae maintained a high density in the tropical area and were frequently found in sites of the south subtropical region, but were absent from the north subtropical region and the northern part of the central subtropical region.  These results indicated that FAW can reproduce annually in the tropical and south subtropical regions of China, including Hainan, Taiwan and the southern area of Fujian, Guangdong, Guangxi, Guizhou, and Yunnan.  Hence, great effort should be made to monitor and control FAW in the year-round breeding region to suppress the population density of this area and to reduce migration of moths into northern parts of China.  This study clarifies the occurrence area of the pest in winter in China and provides much valuable information for its population forecasting and management.
Keywords:    
Received: 31 March 2020   Accepted:
Fund: This work was supported by the National Key R&D Program of China (2017YFB0403905), the Central Public-interest Scientific Institution Basal Research Fund, China (CAAS-ZDRW202007), and the earmarked fund for China Agriculture Research System (CARS-15-19).
Corresponding Authors:  Correspondence WU Kong-ming, Tel: +86-10-82105551, E-mail: wukongming@caas.cn    
About author:  YANG Xian-ming, Tel: +86-10-62816631, E-mail: xmyang@ippcaas.cn; * These authors contributed equally to this study.

Cite this article: 

YANG Xian-ming, SONG Yi-fei, SUN Xiao-xu, SHEN Xiu-jing, WU Qiu-lin, ZHANG Hao-wen, ZHANG Dan-dan, ZHAO Sheng-yuan, LIANG Ge-mei, WU Kong-ming . 2021. Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China. Journal of Integrative Agriculture, 20(3): 772-782.

Abrahams P, Bateman M, Beale T, Clotte T, Cock M, Colmenarez Y, Corniani N, Day R, Early R, Godwin J, Gomez J, Gonzalez Moreno P, Murphy S T, Oppong-Mensah B, Phiri N, Pratt C, Richards G, Silvestri S, Wit A. 2017. Fall Armyworm: Impacts and Implications for Africa. Evidence Note (2), September 2017. Centre for Agriculture and Bioscience International, Wallingford, UK.
Ali A, Luttrell R G, Schneider J C. 1990. Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 83, 725–733.
Barfield C S, Mitchell E R, Poe S L. 1978. A temperature-dependent model for fall armyworm development. Annals of the Entomological Society of America, 71, 70–74.
CABI (Centre for Agriculture and Bioscience International). 2016. Spodoptera Frugiperda (Fall Armyworm). CABI, Wallingford, UK.
Cock M J W, Beseh P K, Buddie A G, Cafá G, Crozier J. 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific Reports, 7, 4103.
Early R, González-Moreno P, Murphy S T, Day R. 2018. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota, 40, 25–50.
FAO (Food and Agriculture Organization). 2018a. Fall armyworm monitoring and early warning system (FAMEWS) platform. [2019-11-21].  http://www.fao.org/fall-armyworm/en/
FAO. 2018b. Integrated Management of the Fall Armyworm on Maize: A Guide for Farmer Field Schools in Africa. Food and Agricultural Organization of the United Nations, Rome.
Garcia A G, Godoy W A C, Thomas J M G, Nagoshi R N, Meagher R L. 2017. Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the State of Florida. Journal of Economic Entomology, 111, 120–126.
Ge S S, He L M, He W, Yan R, Wyckhuys K A G, Wu K M. 2021. Laboratory-based flight performance of the fall armyworm, Spodoptera frugiperda. Journal of Integrative Agriculture, 20, 707–714.
Goergen G, Kumar P L, Sankung S B, Togola A, Tamò M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE, 11, e0165632.
He L M, Ge S S, Chen Y C, Wu Q L, Jiang Y Y, Wu K M. 2019. The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodoptera frugiperda. Plant Protection, 45, 18–26. (in Chinese)
He W, Zhao S Y, Ge S S, Jiang Y Y, Zhao X C, Wu K M. 2019. Population prediction method using sexual trapping for Spodoptera frugiperda. Plant Protection, 45, 48–53. (in Chinese)
Jiang X F, Luo L Z, Li K B, Zhao T C, Hu Y. 2001. A study on the cold hardiness of the beet armyworm, Spodoptera exigua. Acta Ecologica Sinica, 21, 1575–1582. (in Chinese)
Jiang Y Y, Liu J, Xie M C, Li Y H, Yang J J, Zhang M L, Qiu K. 2019. Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 45, 10–19. (in Chinese)
Johnson S J. 1987. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the Western Hemisphere. International Journal of Tropical Insect Science, 8, 543–549.
Liu J, Jiang Y Y, Liu W C, Li Y H, Zeng J, Yang Q P. 2019. Investigation and forecast techniques of Spodoptera frugiperda. China Plant Protection, 39, 44–47. (in Chinese)
Luginbill P. 1928. The fall army worm. USDA Technology Bulletin, 34, 91.
Montezano D G, Specht A, Sosa-Gómez D R, Roque-Specht V F, Sousa-Silva J C, Paula-Moraes S V D, Peterson J A, Hunt T E. 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology, 26, 286–301.
Nagoshi R N, Meagher R L. 2008. Review of fall armyworm (Lepidoptera: Noctuidae) genetic complexity and migration. The Florida Entomologist, 91, 546–554.
Nagoshi R N, Meagher R L, Flanders K, Gore J, Jackson R, Lopez J, Armstrong J S, Buntin G D, Sansone C, Leonard B R. 2008. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera: Noctuidae) corn-strain populations form Texas and Florida. Journal of Economic Entomology, 101, 742–749.
Nagoshi R N, Meagher R L, Hay-Roe M. 2012. Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecology and Evolution, 2, 1458–1467.
Pashley D P. 1986. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Annals of the Entomological Society of America, 79, 898–904.
Prasanna B M, Huesing J E, Eddy R, Peschke V M. 2018. Fall Armyworm in Africa: A Guide for Integrated Pest Management. CIMMYT/USAID, Mexico.
Qin H G, Ye Z X, Ding J, Huang S J, Luo R H. 2002. Effect of temperature on the development, survival and fecundity of Spodoptera litura Fabricius. Chinese Journal of Eco-Agriculture, 10, 76–79. (in Chinese)
Sharanabasappa D, Kalleshwaraswamy C M, Asokan R, Swamy H M M, Maruthi M S, Pavithra H B, Hegde K, Navi S, Prabhu S T, Goergen G. 2018. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Management in Horticultural Ecosystems, 24, 23–29.
Sparks A N. A review of the biology of the fall armyworm. 1979. The Florida Entomologist, 62, 82–86.
Stokstad E. 2017. New crop pest takes Africa at lightning speed. Science, 356, 473–474.
Sun X X, Hu C X, Jia H R, Wu Q L, Shen X J, Zhao S Y, Jiang Y Y, Wu K M. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture, 20, 664–672.
Valdez-Torres J B, Soto-Landeros F, Osuna-Enciso T, Báez-Sañudo M A. 2012. Modelos de predicción fenológica para maíz blanco (Zea mays L.) y gusano cogollero (Spodoptera frugiperda J. E. Smith). Agrociencia, 46, 399–410. (in Spanish)
Westbrook J, Nagoshi R, Meagher R, Fleischer S J, Jairam S. 2016. Modeling seasonal migration of fall armyworm moths. International Journal of Biometeorology, 60, 255–267.
Wood J R, Poe S L, Leppla N C. 1979. Winter survival of fall armyworm pupae in Florida. Environmental Entomology, 8, 249–252.
Wu Q L, He L, Shen X, Jiang Y Y, Liu J, Hu G, Wu K M. 2019a. Estimation of the potential infestation area of newly-invaded fall armyworm Spodoptera frugiperda in the Yangtze River valley of China. Insects, 10, 298.
Wu Q L, Jiang Y Y, Hu G, Wu K M. 2019b. Analysis on spring and summer migration routes of fall armyworm (Spodoptera frugiperda) from tropical and southern subtropical zones of China. Plant Protection, 45, 1–9. (in Chinese)
Wu Q L, Jiang Y Y, Wu K M. 2019c. Analysis of migration routes of the fall armyworm Spodoptera frugiperda (J. E. Smith) from Myanmar to China. Plant Protection, 45, 18. (in Chinese)
Wu R Z. 1977. A survey on the peanut noctuids in Kwangtung Province. Acta Entomologica Sinica, 20, 445–450. (in Chinese)
Yang X M, Sun X X, Zhao S Y, Li J Y, Chi X C, Jiang Y Y, Wu K M. 2020a. Population occurrence, spatial distribution and sampling technique of fall armyworm Spodoptera frugiperda in wheat fields. Plant Protection, 46, 10–16, 23. (in Chinese)
Yang X M, Zhao S Y, Jiang Y Y, Wu K M. 2020b. Population occurrence and sampling technique of fall armyworm Spodoptera frugiperda in barley fields. Plant Protection, 46, 18–23. (in Chinese)
Yao W H. 2005. Biology characteristics of Prodenia litura. Entomological Journal of East China, 14, 122–127. (in Chinese)
Zhang D D, Zhao S Y, Wu Q L, Li Y Y, Wu K M. 2021. Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China. Journal of Integrative Agriculture, 20, 764–771.
Zhang L, Liu B, Jiang Y Y, Liu J, Wu K M, Xiao Y T. 2019. Molecular characterization analysis of fall armyworm populations in China. Plant Protection, 45, 20–27. (in Chinese)
Zhang Z, Zheng Q, Zhang Y H, Liu J, Yin X T, Tang Q B, Li J, Yuan Y, Li X R, Zhu X. 2019. Cold hardiness of laboratory populations of Spodoptera frugiperda. Plant Protection, 45, 43–49, 69. (in Chinese)
Zhao S Y, Yang X M, He W, Zhang H W, Jiang Y Y, Wu K M. 2019. Ovarian development gradation and reproduction potential prediction in Spodoptera frugiperda. Plant Protection, 45, 28–34. (in Chinese)
Zheng X L. 2012. Study on the cold hardening and overwintering regions of Spodoptera exigua in China. Ph D thesis, Huazhong Agricultural University, China. (in Chinese)
[1] ZHOU Nian-bing, ZHANG jun, FANG Shu-liang, WEI Hai-yan, ZHANG Hong-cheng. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1762-1774.
[2] SONG Jie, LU Ming-xing, DU Yu-zhou. Molecular cloning and expression patterns of two small heat shock proteins from Chilo suppressalis (Walker)[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1522-1529.
[3] GUO Liu-ming, HE Jing, LI Jing, CHEN Jian-ping, ZHANG Heng-mu. Chinese wheat mosaic virus: A long-term threat to wheat in China[J]. >Journal of Integrative Agriculture, 2019, 18(4): 821-829.
[4] Hesham A. Ahmed, TONG Yu-xin, YANG Qi-chang, Abdulellah A. Al-Faraj, Ahmed M. Abdel-Ghany. Spatial distribution of air temperature and relative humidity in the greenhouse as affected by external shading in arid climates[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2869-2882.
[5] QIN Jian-yang, LIU Yue-qiu, ZHANG Lei, CHENG Yun-xia, LUO Li-zhi, JIANG Xing-fu. Effects of temperatures on the development and reproduction of the armyworm, Mythimna roseilinea: Analysis using an age-stage, two-sex life table[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1506-1515.
[6] PAN Dan-dan, CAO Shuang-shuang, LU Ming-xing, HANG San-bao, DU Yu-zhou. Genes encoding heat shock proteins in the endoparasitoid wasp, Cotesia chilonis, and their expression in response to temperatures[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1012-1022.
[7] QIN Jing, GAO Peng, ZHANG Xiao-xiang, LU Ming-xing, DU Yu-zhou. Characterization of two novel heat shock protein 70s and their transcriptional expression patterns in response to thermal stress in adult of Frankliniella occidentalis (Thysanoptera: Thripidae)[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1023-1031.
[8] YU Tong-ying, LU Ming-xing, CUI Ya-dong. Characterization of T-complex polypeptide 1 (TCP-1) from the Chilo suppressalis HSP60 family and its expression in response to temperature stress[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1032-1039.
[9] LI Qiang, WANG Zheng-rui, LI Ding, WEI Jian-wei, QIAO Wen-chen, MENG Xiang-hai, SUN Shu-luan, LI Hui-min, ZHAO Ming-hui, CHEN Xiu-min, ZHAO Feng-wu. Evaluation of a new method for quantification of heat tolerance in different wheat cultivars[J]. >Journal of Integrative Agriculture, 2018, 17(04): 786-795.
[10] XING Zhi-peng, WU Pei, ZHU Ming, QIAN Hai-jun, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, XU Ke, HUO Zhong-yang, DAI Qi-gen, ZHANG Hong-cheng. Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1923-1935.
[11] HE Ying-bin, ZHOU Yang-fan, CAI Wei-min, WANG Zhuo-zhuo, DUAN Ding-ding, LUO Shan-jun, CHEN Jing-zhu. Using a process-oriented methodology to precisely evaluate temperature suitability for potato growth in China using GIS[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1520-1529.
[12] FAN Lin-lin, YONG Ming-li, LI Dan-yang, LIU Yi-jia, LAI Chao-hui, CHEN Hong-ming, CHENG Fang-min, HU Dong-wei. Effect of temperature on the development of sclerotia in Villosiclava virens[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2550-2555.
No Suggested Reading articles found!