Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (3): 553-562    DOI: 10.1016/S2095-3119(18)61992-6
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.)
MA Wen-ya1*, LIU Wei1*, HOU Wen-sheng1, SUN Shi1, JIANG Bing-jun1, HAN Tian-fu1, FENG Yong-jun2, WU Cun-xiang1 
1 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R.China
Download:  PDF (1031KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  As an important food crop and oil crop, soybean (Glycine max [L.] Merr.) is capable of nitrogen-fixing by root nodule.  Previous studies showed that GmNMH7, a transcription factor of MADS-box family, is associated with nodule development, but its specific function remained unknown.  In this study, we found that GmNMH7 was specifically expressed in root and nodule and the expression pattern of GmNMH7 was similar to several genes involved in early development of nodule (GmENOD40-1, GmENOD40-2, GmNFR1a, GmNFR5a, and GmNIN) after rhizobia inoculation.  The earlier expression peak of GmNMH7 compared to the other genes (GmENOD40-1, GmENOD40-2, GmNFR1a, GmNFR5a, and GmNIN) indicated that the gene is related to the nod factor (NF) signaling pathway and functions at the early development of nodule.  Over-expression of GmNMH7 in hairy roots significantly reduced the nodule number and the root length.  In the transgenic hairy roots, over-expression of GmNMH7 significantly down-regulated the expression levels of GmENOD40-1, GmENOD40-2, and GmNFR5α.  Moreover, the expression of GmNMH7 could respond to abscisic acid (ABA) and gibberellin (GA3) treatment in the root of Zigongdongdou seedlings.  Over-expressing GmNMH7 gene reduced the content of ABA, and increased the content of GA3 in the positive transgenic hairy roots.  Therefore, we concluded that GmNMH7 might participate in the NF signaling pathway and negatively regulate nodulation probably through regulating the content of GA3.
 
Keywords:  soybean        GmNMH7        MADS-box gene        nodulation        ABA       GA3  
Received: 28 December 2017   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31271636) and the earmarked fund for China Agriculture Research System (CARS-04).
Corresponding Authors:  Correspondence FENG Yong-jun, Tel: +86-10-68914495-804, Fax: +86-10-68915956, E-mail: fengyj@bit.edu.cn; WU Cun-xiang, Tel: +86-10-82105865, Fax: +86-10-82108784, E-mail: wucunxiang@caas.cn    
About author:  * These authors contributed equally to this study.

Cite this article: 

MA Wen-ya, LIU Wei, HOU Wen-sheng, SUN Shi, JIANG Bing-jun, HAN Tian-fu, FENG Yong-jun, WU Cun-xiang. 2019. GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.). Journal of Integrative Agriculture, 18(3): 553-562.

Amor B B, Shaw S L, Oldroyd G E, Maillet F, Penmetsa R V, Cook D, Long S R, Dénarié J, Gough C. 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. The Plant Journal, 34, 495–506.
Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan J T, Maolanon N, Vinther M, Lorentzen A, Madsen E B, Jensen K J, Roepstorff P, Thirup S, Ronson C W, Thygesen M B, Stougaard J. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 109, 13859–13864.
Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. 2011. Overexpression of TaNHX2, enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue & Organ Culture, 107, 541–552.
Charon C, Sousa C, Crespi M, Kondorosi A. 1999. Alteration of ENOD40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. The Plant Cell, 11, 1953–1965.
Compaan B, Yang W C, Bisseling T, Franssen H. 2001. ENOD40 expression in the pericycle precedes cortical cell division in rhizobium-legume interaction and the highly conserved internal region of the gene does not encode a peptide. Plant and Soil, 230, 1–8.
Crespi M D, Jurkevitch E, Poiret M, D’Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A. 1994. ENOD40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. The EMBO Journal, 13, 5099–5112.
Fåhraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. Journal of General Microbiology, 16, 374–381.
Feng Z, Bo P, Smith D L. 1997. Application of gibberellic acid to the surface of soybean seed (Glycine max L. Merr.) and symbiotic nodulation, plant development, final grain and protein yield under short season conditions. Plant and Soil, 188, 329–335.
Geurts R, Heidstra R, Hadri A E, Downie J A, Franssen H, Van K A, Bisseling T. 1997. Sym2 of pea is involved in a nodulation factor-perception mechanism that controls the infection process in the epidermis. Plant Physiology, 115, 351–359.
Heidstra R, Geurts R, Franssen H, Spaink H P, Kammen A V, Bisseling T. 1994. Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiology, 105, 787–797.
Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen C D, Men A, Carroll B J, Gresshoff P M. 2010. Inactivation of duplicated Nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant & Cell Physiology, 51, 201–214.
Indrasumunar A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M. 2011. Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr.). The Plant Journal, 65, 39–50.
Kumagai H, Kinoshita E, Ridge R W, Kouchi H. 2006. RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant & Cell Physiology, 47, 1102–1111.
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 302, 630–633.
Madsen E B, Madsen L H, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J. 2003. A receptor kinase gene of the lysm type is involved in legume perception of rhizobial signals.Nature, 425, 637–640.
Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M. 2009. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. The Plant Journal, 58, 183–194.
Mathesius U, Charon C, Rolfe B G, Kondorosi A, Crespi M. 2000. Temporal and spatial order of events during the induction of cortical cell divisions in white clover by Rhizobium leguminosarum bv. trifolii inoculation or localized cytokinin addition. Molecular Plant-Microbe Interactions, 13, 617–628.
Páez-Valencia J, Sánchez-Gómez C, Valencia-Mayoral P, Contreras-Ramos A, Hernández-Lucas I, Orozco-Segovia A, Gamboa-deBuen A. 2008a. Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Science, 175, 596–603.
Páez-Valencia J, Valencia-Mayoral P, Sánchez-Gómez C, Contreras-Ramos A, Hernández-Lucas I, Martínez-Barajas E, Gamboa-deBuen A. 2008b. Identification of fructose-1,6-bisphosphate aldolase cytosolic class I as an NMH7 MADS domain associated protein. Biochemical & Biophysical Research Communications, 376, 700–705.
Patel D, Thaker V S. 2007. Estimation of endogenous contents of phytohormones during internode development in Merremia emarginata. Biologia Plantarum, 51, 75–79.
Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J. 2003. Plant recognition of symbiotic bacteria requires two lysm receptor-like kinases. Nature, 425, 585–592.
Sanjuan J, Carlson R W, Spaink H P, Bhat U R, Barbour W M, Glushka J, Stacey G. 1992. A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proceedings of the National Academy of Sciences of the United States of America, 89, 8789–8793.
Schauser L, Roussis A, Stiller J, Stougaard J. 1999. A plant regulator controlling development of symbiotic root nodules. Nature, 402, 191–195.
Velde W V D, Guerra J C P, Keyser A D, Rycke R D, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S. 2006. Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology, 141, 711–720.
Wan X, Franssen H. 2007. Medicago truncatulaENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. Journal of Experimental Botany, 58, 2033–2041.
Wang M, Heimovaara-Dijkstra S, Duijn B V. 1995. Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta, 195, 586–592.
Williams P M, Mallorca M S D. 1984. Effect of gibberellins and the growth retardant CCC on the nodulation of soya. Plant and Soil, 77, 53–60.
Wu C X, Ma Q B, Yam K M, Cheung M Y, Xu Y Y, Han T F, Lam H M, Chong K. 2006. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.] Merr.) flowering reversion system. Planta, 223, 725–735.
Yang W C, Katinakis P, Hendriks P, Smolders A, De V F, Spee J, Van A K, Bisseling T, Franssen H. 1993. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. The Plant Journal, 3, 573–585.
Zucchero J C, Caspi M, Dunn K. 2001. NGL9: A third MADS box gene expressed in alfalfa root nodules. Molecular Plant-Microbe Interactions, 14, 1463–1467.
[1] Runnan Zhou, Sihui Wang, Peiyan Liu, Yifan Cui, Zhenbang Hu, Chunyan Liu, Zhanguo Zhang, Mingliang Yang, Xin Li, Xiaoxia Wu, Qingshan Chen, Ying Zhao. Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2492-2510.
[2] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[5] Dong An, Xingfa Lai, Tianfu Han, Jean Marie Vianney Nsigayehe, Guixin Li, Yuying Shen. Crossing latitude introduction delayed flowering and facilitated dry matter accumulation of soybean as a forage crop[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1436-1447.
[6] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[7] Jia Jia, Huan Wang, Ximeng Yang, Bo Chen, Ruqian Wei, Qibin Ma, Yanbo Cheng, Hai Nian. Identification of long InDels through whole genome resequencing to fine map qIF05-1 for seed isoflavone content in soybean (Glycine max L. Merr.) [J]. >Journal of Integrative Agriculture, 2025, 24(1): 85-100.
[8] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[9] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[10] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[11] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[12] Tantan Zhang, Yali Liu, Shiqiang Ge, Peng Peng, Hu Tang, Jianwu Wang. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4216-4236.
[13] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
[14] Berhane S. GEBREGZIABHER, ZHANG Sheng-rui, Muhammad AZAM, QI Jie, Kwadwo G. AGYENIM-BOATENG, FENG Yue, LIU Yi-tian, LI Jing, LI Bin, SUN Jun-ming. Natural variations and geographical distributions of seed carotenoids and chlorophylls in 1 167 Chinese soybean accessions[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2632-2647.
[15] ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao. Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2729-2745.
No Suggested Reading articles found!