Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (1): 43-53    DOI: 10.1016/S2095-3119(18)61905-7
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Shade stress decreases stem strength of soybean through restraining lignin biosynthesis
LIU Wei-guo1*, Sajad Hussain1*, LIU Ting1, ZOU Jun-lin2, REN Meng-lu1, ZHOU Tao1, LIU Jiang1, YANG Feng1, YANG Wen-yu1 
1 Institute of Ecological Agriculture, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611930, P.R.China
2 Rural Development Office of Pengzhou, Chengdu 611930, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system.  In the field experiments, three soybean cultivars Nandou 032-4 (shade susceptible cultivar; B1), Jiuyuehuang (moderately shade tolerant cultivar; B2), and Nandou 12 (shade tolerant cultivar; B3) were used to evaluate the relationship between stem stress and lignin metabolism in the stem of soybean.  Results showed that the intercropped soybean was in variable light condition throughout the day time and co-growth stage with maize.  The xylem area and cross section ratio played a main role to form the stem stress.  The B3 both in intercropping and monocropping expressed a high stem stress with higher xylem area, lignin content, and activity of enzymes (phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD)) than those of B1 and B2.  Among the soybean cultivars and planting pattern, lignin content was positively correlated with stem stress.  However, a negative correlation was found between lignin content and actual rate of lodging.  In conclusion, the shade tolerant soybean cultivar had larger xylem area, higher lignin content and activities of CAD, 4CL, PAL, and POD than other soybean cultivars in intercropping.  The lodging in maize-soybean intercropping can be minimized by planting shade tolerant and lodging resistant cultivar of soybean.  The lignin content in stem could be a useful indicator for the evaluation of lodging resistance of soybean in intercropping and activities of enzymes were the key factors that influence the lignin biosynthesis.
Keywords:  intercropping        genotype        Glycine max              lignin accumulation        shade stress  
Received: 16 November 2017   Accepted:
Fund: This study was carried out with the support of the National Key R&D Program of China (2018YFD1000905, 2016YFD0300209) and the National Natural Science Foundation of China (31671626). The authors also thank Dr. Yu Xiaobo (Nanchong Academy of Agricultural Sciences, Sichuan Province, China) for providing soybean seeds for the research.
Corresponding Authors:  Correspondence YANG Wen-yu, Tel: +86-28-86290960, E-mail: mssiyangwy@sicau.edu.cn * These authors contributed equally to this study.    
About author: 

Cite this article: 

LIU Wei-guo, Sajad Hussain, LIU Ting, ZOU Jun-lin, REN Meng-lu, ZHOU Tao, LIU Jiang, YANG Feng, YANG Wen-yu. 2019. Shade stress decreases stem strength of soybean through restraining lignin biosynthesis. Journal of Integrative Agriculture, 18(1): 43-53.

Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in mediterranean wheats. Field Crops Research, 122, 40–48.
Berthet S, Thevenin J, Baratiny D, Demont-Caulet N, Debeaujon I, Bidzinski P, Leple J C, Huis R, Hawkins S, Gomez L D. 2012. Role of plant laccases in lignin polymerization. Chapter 5. Advances in Botanical Research, 61, 145–172.
Board J. 2001. Reduced lodging for soybean in low plant population is related to light quality. Crop Science, 41, 379–384.
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology, 54, 519–546.
Boudet A M, Kajita S, Grima-Pettenati J, Goffner D. 2003. Lignins and lignocellulosics: A better control of synthesis for new and improved uses. Trends in Plant Science, 8, 576–581.
Douglas C J. 1996. Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees. Trends in Plant Science, 1, 171–178.
Dranski J A L, Malavasi U C, Malavasi M. 2015. Relationship between lignin content and quality of Pinus taeda seedlings. Revista Árvore, 39, 905–913. (in Portuguese)
Fagerstedt K V, Kukkola E M, Koistinen V V, Takahashi J, Marjamaa K. 2010. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. Journal of Integrative Plant Biology, 52, 186–194.
Jones L, Ennos A R, Turner S R. 2001. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. The Plant Journal, 26, 205–216.
Kashiwagi T, Ishimaru K. 2004. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiology, 134, 676–683.
Knobloch K H, Hahlbrock K. 1975. Isoenzymes of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. European Journal of Biochemistry, 52, 311–320.
Knörzer H, Graeff-Hönninger S, Guo B, Wang P, Claupein W. 2009. The Rediscovery of Intercropping in China: A Traditional Cropping System for Future Chinese Agriculture - A Review. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Springer, The Netherlands. pp. 13–44.
Lewis N G, Yamamoto E. 1990. Lignin: Occurrence, biogenesis and biodegradation. Annual Review of Plant Biology, 41, 455–496.
Liu W G, Deng Y C, Hussain S, Zou J L, Yuan J, Luo L, Yang C Y, Yuan X Q, Yang W Y. 2016. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research, 196, 261–267.
Liu W G, Zou J L, Zhang J, Yang F, Wan Y, Yang W Y. 2015. Evaluation of soybean (Glycine max) stem vining in maize-soybean relay strip intercropping system. Plant Production Science, 18, 69–75.
Lu H, Zhao Y L, Jiang X N. 2004. Stable and specific expression of 4-coumarate: Coenzyme A ligase gene (4CL1) driven by the xylem-specific Pto4CLl promoter in the transgenic tobacco. Biotechnology Letters, 26, 1147–1152.
Luo L, Yu X B, Wan Y, Jiang T, Du J B, Zou J L, Yang W Y, Liu W G. 2015. The relationship between lodging and stem endogenous gibberellins metabolism pathway of relay intercropping soybean at seedling stage. Scientia Agricultura Sinica, 48, 2528–2537. (in Chinese)
Ma Q H. 2009. The expression of caffeic acid 3-O-methyltransferase in two wheat genotypes differing in lodging resistance. Journal of Experimental Botany, 60, 2763–2771.
Morrison T A, Kessler J R, Hatfield R D, Buxton D R. 1994. Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food & Agriculture, 65, 133–139.
Moura J C M S, Bonine C A V, Dornelas M C, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.
Ofori F, Stern W R. 1987. Cereal-legume intercropping systems. Advances in Agronomy, 41, 41–90.
Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M, Kitano H, Matsuoka M. 2014. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties. PLoS ONE, 9, e86870.
Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z. 2014. Lodging resistance of winter wheat (Triticum aestivum L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157, 1–7.
Reddy M V B, Arul J, Angers P, Couture L. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural & Food Chemistry, 47, 1208–1216.
Sewalt V, Ni W, Blount J W, Jung H G, Masoud S A, Howles P A, Lamb C, Dixon R A. 1997. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology, 115, 41–50.
Syros T D, Yupsanis T A, Economou A S. 2005. Expression of peroxidases during seedling growth in Ebenus cretica L. as affected by light and temperature treatments. Plant Growth Regulation, 46, 143–151.
Vance C, Kirk T, Sherwood R. 1980. Lignification as a mechanism of disease resistance. Annual Review of Phytopathology, 18, 259–288.
Wang C, Ruan R, Yuan X, Hu D, Yang H, Li Y, Yi Z. 2014. Relationship between lignin metabolism and lodging resistance of culm in buckwheat. Journal of Agricultural Science, 6, 29–36.
Xiao C, Barnes W J, Zamil M S, Yi H, Puri V M, Anderson C T. 2017. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant Journal for Cell & Molecular Biology, 89, 1159.
Xiong Q. 2008. Plant Physiology Experiment. Sichuan Science and Technology Press, Chengdu. (in Chinese)
Xu Z Y, Zhang D D, Hu J, Zhou X, Ye X, Reichel K L, Stewart N R, Syrenne R D, Yang X H, Gao P. 2009. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 10, 1–15.
Yan Y, Gong W, Yang W, Wan Y, Chen X, Chen Z, Wang L. 2010. Seed treatment with uniconazole powder improves soybean seedling growth under shading by corn in relay strip intercropping system. Plant Production Science, 13, 367–374.
Yang F, Huang S, Gao R C, Liu W G, Yong T W, Wang X C, Wu X L, Yang W Y. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 155, 245–253.
Zhang Z L, Qu W J. 2003. Experimental Instruction of Plant Physiology. 3rd ed. Higher Education Press, Beijing. (in Chinese)
[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[8] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[9] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!