Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (01): 210-219    DOI: 10.1016/S2095-3119(17)61740-4
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat
LI Chun-xi1, MA Shou-chen2, SHAO Yun1, MA Shou-tian1, ZHANG Ling-ling1
1 College of Life Science, Henan Normal University, Xinxiang 453007, P.R.China 
2 Field Scientific Observation and Research Base of Land Use, Ministry of Land and Resources/Henan Polytechnic University, Jiaozuo 454000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  We investigated the soil microbiologic characteristics, and the yield and sustainable production of winter wheat, by conducting a long-term fertilization experiment.  A single application of N, P and K (NPK) fertilizer was taken as the control (CK) and three organic fertilization treatments were used: NPK fertilizer+pig manure (T1), NPK fertilizer+straw return (T2), NPK fertilizer+pig manure+straw return (T3).  The results showed that all three organic fertilization treatments (T1, T2 and T3) significantly increased both soil total N (STN) and soil organic carbon (SOC) from 2008 onwards.  In 2016, the SOC content and soil C/N ratios for T1, T2 and T3 were significantly higher than those for CK.  The three organic fertilization treatments increased soil microbial activity.  In 2016, the activity of urease (sucrase) and the soil respiration rate (SRS) for T1, T2 and T3 were significantly higher than those under CK.  The organic fertilization treatments also increased the content of soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN), the SMBC/SMBN ratio and the microbial quotient (qMB).  The yield for T1, T2 and T3 was significantly higher than that of CK, respectively.  Over the nine years of the investigation, the average yield increased by 9.9, 13.2 and 17.4% for T1, T2 and T3, respectively, compared to the initial yield for each treatment, whereas the average yield of CK over the same period was reduced by 6.5%.  T1, T2, and T3 lowered the coefficient of variation (CV) of wheat yield and increased the sustainable yield index (SYI).  Wheat grain yield was significantly positively correlated with each of the soil microbial properties (P<0.01).  These results showed that the long-term application of combined organic and chemical fertilizers can stabilize crop yield and make it more sustainable by improving the properties of the soil.
Keywords:  winter wheat        long-term organic fertilization        soil microbial features        yield stability        yield sustainability  
Received: 17 February 2017   Accepted:

We acknowledge the financial support from the National Key Research and Development Program of China (2017YFD0301106, 2016YFD0300203-3) and the Science and Technology Innovation Team Support Plan of Universities in Hennan Province, China (18IRTSTHN008).

Corresponding Authors:  Correspondence MA Shou-chen, E-mail:    
About author:  LI Chun-xi,

Cite this article: 

LI Chun-xi, MA Shou-chen, SHAO Yun, MA Shou-tian, ZHANG Ling-ling. 2018. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. Journal of Integrative Agriculture, 17(01): 210-219.

Albiach R, Canet R, Pomanes F, Ingelmo F. 2000. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresource Technology, 5, 43–48.

Bolan N S, Adriano D C. 2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. Journal of Environmental Quality, 32, 120–128.

Chaudhury J, Mandal U K, Sharma K L, Ghosh H, Mandal B. 2005. Assessing soil quality under long-term rice based cropping system. Communications in Soil Science and Plant Analysis, 36, 1141–1161.

Chen H, Cao C F, Kong L C, Zhang C L, Li W, Qiao Y Q, Du S Z, Zhao Z. 2014. Study on wheat yield stability in Huaibei lime concretion black soil area based on long-term fertilization experiment. Scientia Agricultura Sinica, 47, 2580–2590. (in Chinese)

Chu H Y, Lin X, Fu J T, Morimoto S, Yagi K, Hu J L, Zhang J B. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology and Biochemistry, 39, 2971–2976.

Diepeningen A D, Vos O J, Gerard G W, Bruggen A H C. 2006. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Applied Soil Ecology, 31, 120–135.

Fan T L, Stewart B A, Payne W A, Wang Y, Luo J J, GaoY F. 2005. Long-term fertilizer and water availability effects on cereal yield and soil inorganic properties in northwest China. Soil Science Society of America Journal, 69, 842–855.

Gao H J, Peng C, Zhang X Z, Li Q, Zhu P. 2015. Effect of long-term different fertilization on maize yield stability in the northeast black soil region. Scientia Agricultura Sinica, 48, 4790–4799. (in Chinese)

Goyal S, Chander K, Mundra M C, Kapoor K K. 1999. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils, 29, 196–200.

Hao M D, Fan J, Wang Q J, Dang T H, Guo S L, Wang J J. 2007. Wheat yield and yield stability in a long-term fertilization experiment on the loess plateau. Pedosphere, 17, 257–246.

Harris J A. 2003. Measurements of the soil microbial community for estimating the success of restoration. European Journal of Soil Science, 54, 801–808.

Hati K M, Swarup A, Dwivedi A K, Misra A K, Bandyopadhyay K K. 2007. Changes in soil physical properties and organic carbon status at the topsoil horizon of a vertisol of central India after 28 years of continuous cropping, fertilization and manuring. Agriculture Ecosystems & Environment, 119, 127–134.

Huang Q R, Hu F, Huang S, Li H X, Yuan Y H, Pan G X, Zhang W J. 2009. Effect of long-term fertilization on organic carbon and nitrogen in subtropical paddy soil. Pedosphere, 19, 727–734.

Jangid K, Williams M A, Franzluebbers A J, Sanderlin J S, Reeves J H, Jenkins M B, Endale D M, Coleman D C, Whitman W B. 2008. Relative impacts of land-use, management intensity and fertilization upon soil microbioal community structure in agricultural systems. Soil Biology and Biochemistry, 40, 2843–2853.

Jenkinson D S. 1988. The determination of microbial biomass carbon andnitrogen in soil. In: Advances in Nitrogen Cycling in Agricultural Ecosystems. CAB International, Wallingford. pp. 368–386.

Kundu S, Singh M, Saha J K, Biswas A, Tripathi A K, Acharya C L. 2001. Relationship between C addition and storage in a Vertisol under soybean-wheat cropping system in sub-tropical Central India. Journal of Plant Nutrition and Soil Science, 164, 483–486.

Lao X R, Wu Z Y, Gao Y C. 2002. Effect of long-term returning straw to soil on soil fertility. Transactions of the Chinese Society of Agricultural Engineering, 18, 49–51. (in Chinese)

Li D P, Chen L J, Wu Z J, Zhu P, Ren J, Liang C H, Peng C, Gao H J. 2004. Dynamics of microbial biomass N in different fertilized black soil and its related factors. Chinese Journal of Applied Ecology, 15, 1891–1896. (in Chinese)

Li J, Zhao B Q, Li X Y, Hwat B S. 2008. Effect of long-term combined application of organic and mineral fertilizers on soil microbiological properties and fertility. Scientia Agricultura Sinica, 41, 144–152. (in Chinese)

Li Q, Xu M X, Liu G B, Qi Z J, Wang H W. 2012. Evaluation of crop rotation system sustainability in slope land under long-term chemical fertilization based on geometry method. Plant Nutrition and Fertilizer Science, 18, 884–892. (in Chinese)

Li W J, Peng B F, Yang Q Y. 2015. Effects of long-term fertilization on organic carbon and nitrogen accumulation and activity in a paddy soil in double cropping rice area in Dongting Lake of China. Scientia Agricultura Sinica, 48, 488–500. (in Chinese)

Li X Y, Li Y T, Zhao B Q, Li X P, Wang L X, Zhang Z S. 2006. The dynamics of crop yields under different fertilization systems in drab fluvoaquic soil. Acta Agronomica Sinica, 32, 683–689. (in Chinese)

Li Z F, Xu M G, Zhang H M, Zhang S X, Zhang W J. 2010. Sustainability of crop yields in China under long-term fertilization and different ecological conditions. Chinese Journal of Applied Ecology, 21, 1264–1269. (in Chinese)

Livia B, Uwe L, Frank B. 2005. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture Eecosystems & Environment, 109, 141–152.

Ma L, Yang L Z, Shen M X, Xia L Z, Li Y D, Liu G H, Yin S X. 2011. Study on crop yield stability in a typical region of rice-wheat rotation based on long-term fertilization experiment. Chinese Society of Agricultural Engineering, 27, 117–124. (in Chinese)

Ma N N, Li T L, Wu C C, Zhang E P. 2010. Effects of long-term fertilization on soil enzyme activities and soil physicochemical properties of facility vegetable field. Chinese Journal of Applied Ecology, 21, 1766–1771. (in Chinese)

Ma X X, Wang L L, Li Q H, Li H, Zhang S L, Sun B H, Yang X Y. 2012. Effects of longterm fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season. Acta Ecologica Sinica, 32, 5502–5511. (in Chinese)

Majumder B, Mandal B, Bandyopadhyay P K, Chaudhury J. 2007. Soil organic carbon pool sand productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant and Soil, 297, 53–67.

Mando A, Ouattara B, Somado A E, Woperris M C S, Stroosnijder L, Breman H. 2005. Long-term effects of fallow, tillage and manure application on soil organic matter and nitrogen fractions and on sorghum yield under Sudano-Sahelian conditions. Soil Use and Management, 21, 25–31.

Manna M C, Swarup A, Wanjari R H, Mishra B, Shahi D K. 2007. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil and Tillage Research, 94, 397–409.

Paul E A, Clark F E. 1996. Components of the soil biota. In: Paul E A, Clark F E, eds., Soil Microbiology and Biochemistry. 2nd ed. Academic Press, San Diego. pp. 71–107.

Petra M, Ellen K, Bernd M. 2003. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biology and Biochemistry, 35, 453–461.

Plaza C, Hernadez D, Garea-Gil J C, Polo A. 2004. Microbial activity in pig slurry-amended soil under semiarid conditions. Soil Biology and Biochemistry, 36, 1577–1585.

Schloter M, Dilly O, Munch J C. 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems and Environment, 98, 255–262.

Shao X F, Xu M G, Zhang W J, Huang M, Zhou X, Zhu P, Gao H J. 2014. Changes of soil carbon and nitrogen and characteristics of nitrogen mineralization under long-term manure fertilization practices in black soil. Journal of Plant Nutrition and Fertilizer, 20, 326 –335. (in Chinese)

Singh J S, Gupta S R. 1997. Plant decomposition and soil respirationin terrestrial ecosystems. Botany Review, 43, 449–528.

Timo K, Cristina L F, Frank E. 2006. Abundance and biodiversity of soil microathropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Applied Soil Ecology, 33, 278–285.

Timo K, Stephan W, Frank E. 2004. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology, 40, 87–94.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method formeasuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

Wang F, Zhang J S, Gao P C, Tong Y A. 2011. Effects of application of different organic materials on soil microbiological properties and soil fertility in Weibei rainfed highland. Plant Nutrition and Fertilizer Science, 17, 702–709. (in Chinese)

Wang X L, Jia Y, Li X G, Long R J, Ma Q, Li F M, Song Y J. 2009. Effects of land use on soil total and light fraction organic and microbial biomass C and N in a semi-arid ecosystem of northwest China. Geoderma, 153, 285–290.

Wei T, Han L N, Han Q F, Jia Z K, Zhang R, Nie J F, Yang B P. 2012. Effects of organic fertilization on soil nutrient availability and enzyme activity in arid areas. Plant Nutrition and Fertilizer Science, 18, 611–620. (in Chinese)

Xu Y C, Shen Q R, Ran W. 2002. Effects of zero-tillage and application of manure on soil microbial biomass C, N and P after sixteen years of cropping. Acta Pedologica Sinica, 39, 89–96. (in Chinese)

Xu Y L, Tang H M, Xiao X P, Guo L J, Li W Y, Sun J M. 2016. Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field. Acta Ecologica Sinica, 36, 5847–5855. (in Chinese)

Yadav R L, Dwivedi B S, Prasad K Tomar O K, Shurpali N J, pandey P S. 2000. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers. Field Crops Research, 68, 219–246.

Yao H Y, Huang C Y. 2006. Soil Microbial Ecologyand its Experimental Technique. Science Press, Beijing. pp. 138–192. (in Chinese)

Yusuf A A, Abaidoo R C, Iwuafor E N, Olufajo O O, Sanginga N. 2009. Rotation effects of grain legumes and fallow on maize yield, microbial biomassand chemical properties of an Alfisol in the Nigerian savanna. Agriculture, Ecosystems and Environment, 129, 325–331.

Zang Y F, Hao M D, Zhang L Q, Zhang H Q. 2015. Effects of wheat cultivation and fertilization on soil microbial biomass carbon, soil microbial biomass nitrogen and soil basal respiration in 26 years. Acta Ecologica Sinica, 35, 1445–1451. (in Chinese)

Zhang D X, Han Z Q, Liu W, Gao S G, Hou D J, Li G F, Chang L S. 2005. Biological effect of maize stalk return to field directly under different accretion decay conditions. Plant Nutrition and Fertilizer Science, 11, 742–749. (in Chinese)

Zhang X W, Zhao G B, Yang R Q, Wang Y. 2006. Comprehensive utilization of agricultural straws in ecycle economy. Chinese Society of Agricultural Engineering, 22(Suppl.), 107–109.

Zhou L X, Ding M M. 2007. Soil microbial characteristics as bio-indicators of soil health. Biodiversity Science, 15, 162–171. (in Chinese)
[1] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[2] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[3] Ebrahim ROOHI, Reza MOHAMMADI, Abdoul Aziz NIANE, Javad VAFABAKHSH, Mozaffar ROUSTAEE, Mohammad Reza JALAL KAMALI, Shahriar SOHRABI, Shahriar FATEHI, Hossain TARIMORADI. Genotype×tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3199-3215.
[4] LIU Xue-jing, YIN Bao-zhong, HU Zhao-hui, BAO Xiao-yuan, WANG Yan-dong, ZHEN Wen-chao. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2343-2359.
[5] ZHAI Li-chao, Lü Li-hua, DONG Zhi-qiang, ZHANG Li-hua, ZHANG Jing-ting, JIA Xiu-ling, ZHANG Zheng-bin. The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1687-1700.
[6] YAO Feng-mei, LI Qin-ying, ZENG Rui-yun, SHI Si-qi. Effects of different agricultural treatments on narrowing winter wheat yield gap and nitrogen use efficiency in China[J]. >Journal of Integrative Agriculture, 2021, 20(2): 383-394.
[7] MA Ming-yang, LIU Yang, ZHANG Yao-wen, QIN Wei-long, WANG Zhi-min, ZHANG Ying-hua, LU Cong-ming, LU Qing-tao. In situ measurements of winter wheat diurnal changes in photosynthesis and environmental factors reveal new insight into photosynthesis improvement by super-high-yield cultivation[J]. >Journal of Integrative Agriculture, 2021, 20(2): 527-539.
[8] LI Jin-peng, ZHANG Zhen, YAO Chun-sheng, LIU Yang, WANG Zhi-min, FANG Bao-ting, ZHANG Ying-hua. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate[J]. >Journal of Integrative Agriculture, 2021, 20(2): 606-621.
[9] WU Fen, ZHAI Li-chao, XU Ping, ZHANG Zheng-bin, Elamin Hafiz BAILLO, Lemessa Negasa TOLOSA, Roy Njoroge KIMOTHO, JIA Xiu-ling, GUO Hai-qian. Effects of deep vertical rotary tillage on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China[J]. >Journal of Integrative Agriculture, 2021, 20(2): 593-605.
[10] ZHANG Pan-pan, CHEN Yu-lu, WANG Chen-yang, MA Geng, LÜ Jun-jie, LIU Jing-bao, GUO Tian-cai. Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3277-3288.
[11] WANG Rui, WANG Ying, HU Ya-xian, DANG Ting-hui, GUO Sheng-li. Divergent responses of tiller and grain yield to fertilization and fallow precipitation: Insights from a 28-year long-term experiment in a semiarid winter wheat system[J]. >Journal of Integrative Agriculture, 2021, 20(11): 3003-3011.
[12] ZHANG Li, CHU Qing-quan, JIANG Yu-lin, CHEN Fu, LEI Yong-deng. Impacts of climate change on drought risk of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2601-2612.
[13] YANG Fei-fei, LIU Tao, WANG Qi-yuan, DU Ming-zhu, YANG Tian-le, LIU Da-zhong, LI Shi-juan, LIU Sheng-ping. Rapid determination of leaf water content for monitoring waterlogging in winter wheat based on hyperspectral parameters[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2613-2626.
[14] CHEN Ying, LIU Feng-shan, TAO Fu-lu, GE Quan-sheng, JIANG Min, WANG Meng, ZHAO Feng-hua. Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2206-2215.
[15] CAI Dong-yu, YAN Hai-jun, LI Lian-hao. Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2326-2339.
No Suggested Reading articles found!