Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (6): 1883-1895    DOI: 10.1016/j.jia.2022.12.008
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system
ZHANG Chong1, WANG Dan-dan1, ZHAO Yong-jian1, XIAO Yu-lin1, CHEN Huan-xuan1, LIU He-pu2, FENG Li-yuan2, YU Chang-hao2, JU Xiao-tang1#

1 College of Tropical Crops, Hainan University, Haikou 570228, P.R.China

2 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

减少氨排放是提高大气环境质量的重要途径之一,农田是全球重要氨排放来源合理的农田管理是减少氨排放并获得较高目标产量的基础本研究基于不同施肥措施的冬小麦-夏玉米轮作长期定位试验,定量氨排放、作物产量和土壤肥力变化,研究全面实施4R养分管理能否显著降低土壤氨排放至较低水平,并研究4R养分管理与有机肥投入的交互作用。结果表明,与传统的高施氮量化肥处理相比4R养分管理显着降低排放量至6 kg N ha-1 yr-1排放因子1.72%),同时维持较高的籽粒产量(12.37 Mg ha-1 yr-1)和土壤肥力(土壤有机碳7.58 g kg-1)将4R养分管理与有机肥结合其NH3排放量(7 kg N ha-1 yr-1)和排放因子(1.74%)与4R养分管理相当,同时粮食产量和土壤有机碳分别增加到14.79 Mg ha-1 yr-1 10.09 g kg-1。与传统的高施氮量化肥处理相比,部分有机肥替代不仅显著减少NH3排放,而且还提高作物产量和土壤肥力,而秸秆还田对NH3排放无显著影响本研究结果强调了通过将4R养分管理与有机肥投入相结合实现碳氮耦合,能够同时实现较高的作物产量和低的环境代价



Abstract  

Ammonia (NH3) emissions should be mitigated to improve environmental quality.  Croplands are one of the largest NH3 sources, they must be managed properly to reduce their emissions while achieving the target yields.  Herein, we report the NH3 emissions, crop yield and changes in soil fertility in a long-term trial with various fertilization regimes, to explore whether NH3 emissions can be significantly reduced using the 4R nutrient stewardship (4Rs), and its interaction with the organic amendments (i.e., manure and straw) in a wheat–maize rotation.  Implementing the 4Rs significantly reduced NH3 emissions to 6 kg N ha–1 yr–1 and the emission factor to 1.72%, without compromising grain yield (12.37 Mg ha–1 yr–1) and soil fertility (soil organic carbon of 7.58 g kg–1) compared to the conventional chemical N management.  When using the 4R plus manure, NH3 emissions (7 kg N ha–1 yr–1) and the emission factor (1.74%) were as low as 4Rs, and grain yield and soil organic carbon increased to 14.79 Mg ha–1 yr–1 and 10.09 g kg–1, respectively.  Partial manure substitution not only significantly reduced NH3 emissions but also increased crop yields and improved soil fertility, compared to conventional chemical N management.  Straw return exerted a minor effect on NH3 emissions.  These results highlight that 4R plus manure, which couples nitrogen and carbon management can help achieve both high yields and low environmental costs.

Keywords:  ammonia emission        crop yield        4R nutrient stewardship        partial manure substitution        winter wheat-summer maize cropping system  
Received: 12 August 2022   Online: 27 December 2022   Accepted: 14 November 2022
Fund: 

This work was supported by the Hainan Key Research and Development Project, China (ZDYF2021XDNY184), the Hainan Provincial Natural Science Foundation of China (422RC597), the National Natural Science Foundation of China (41830751), the Hainan Major Science and Technology Program, China (ZDKJ2021008), and the Hainan University Startup Fund, China (KYQD(ZR)-20098).

About author:  ZHANG Chong, E-mail: zhangchong@hainanu.edu.cn; #Correspondence JU Xiao-tang, Mobile: +86-13426072652, E-mail: juxt@cau.edu.cn

Cite this article: 

ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. 2023. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system. Journal of Integrative Agriculture, 22(6): 1883-1895.

4R Plus. 2022. 4R Plus - Nutrient management and conservation for healthier soil. [2022-06-15]. https://4rplus.org/conservation-practices/

Bouwman L, Goldewijk K K, Van Der Hoek K W, Beusen A H, Van Vuuren D P, Willems J, Rufino M C, Stehfest E. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proceedings of the National Academy of Sciences of the United States of America110, 20882–20887.

Bowman W D, Cleveland C C, Halada Ĺ, Hreško J, Baron J S. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience1, 767–770.

Cheng Y, Wang J, Wang J Y, Chang S X, Wang S Q, 2017. The quality and quantity of exogenous organic carbon input control microbial NO3– immobilization: A meta-analysis. Soil Biology and Biochemistry115, 357–363.

Du Z, Xiao Y, Qi X, Liu Y, Fan X, Li Z. 2018. Peanut–shell biochar and biogas slurry improve soil properties in the North China Plain: A four-year field study. Scientific Reports8, 13724.

Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience1, 636–639.

Gao B, Ju X, Su F, Meng Q, Oenema O, Christie P, Chen X, Zhang F. 2014. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Science of the Total Environment472, 112–124.

Gu B, Song Y, Yu C, Ju X. 2020. Overcoming socioeconomic barriers to reduce agricultural ammonia emission in China. Environmental Science and Pollution Research27, 25813–25817.

Gu B J, Zhang L, Van Dingenen R, Vieno M, Van Grinsven H J M, Zhang X M, Zhang S H, ChenY F, Wang S T, Ren C C, Rao S, Holland M, Winiwarter W, Chen D L, Xu J M, Sutton M A. 2021. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science374, 758–762.

Han D R, Wiesmeier M, Conant R T, Kühnel A, Sun Z G, KögelKnabner I, Hou R X, Cong P F, Liang R B, Zhu O R. 2017. Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s. Global Change Biology24, 987–1000.

Hernández D L, Vallano D M, Zavaleta E S, Tzankova Z, Pasari J R, Weiss S, Selmants P C, Morozumi C. 2016. Nitrogen pollution is linked to US listed species declines. Bioscience66, 213–222.

Huang S, Lv W, Bloszies S, Shi Q, Pan X, Zeng Y. 2016. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: A meta-analysis. Field Crops Research192, 118–125.

Huang T, Gao B, Christie P, Ju X. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences10, 7897–7911.

Huang T, Ju X, Yang H. 2017. Nitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Scientific Reports7, 42247.

IFA. 2022. Fertilizer use by crop and country for the 2017–2018 period. [2022-06-15]. https://www.ifastat.org/consumption/fertilizer-use-by-crop

Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America106, 3041–3046.

Ju X T, Zhang C. 2017. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. Journal of Integrative Agriculture16, 2848–2862.

Ju X T, Zhang C. 2021. The principles and indicators of rational N fertilization. Acta Pedologica Sinica58, 1–13. (in Chinese)

De Klein C, Novoa R S, Ogle S, Smith K A, Rochette P, Wirth T C, McConkey B, Mosier A, Rypdal K, Walsh M. 2006. N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: Eggleston H S, Buendia L, Miwa K, Ngara T, Tanabe K, eds., Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Kanagawa, Japan. pp. 1–54.

Ladha J K, Tirol-Padre A, Reddy C K, Cassman K G, Verma S, Powlson D S, van Kessel C, de Richter D B, Chakraborty D, Pathak H. 2016. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Scientific Reports6, 19355.

Li Q, Cui X, Liu X, Roelcke M, Pasda G, Zerulla W, Wissemeier A H, Chen X, Goulding K, Zhang F. 2017. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain. Scientific Reports7, 43853.

Li T, Zhang W, Yin J, Chadwick D, Norse D, Lu Y, Liu X, Chen X, Zhang F, Powlson D, Dou Z. 2018. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology24, e511–e521.

Liu L, Xu W, Lu X, Zhong B, Guo Y, Lu X, Zhao Y, He W, Wang S, Zhang X, Liu X, Vitousek P. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America119, e2121998119.

Liu M, Huang X, Song Y, Xu T, Wang S, Wu Z, Hu M, Zhang L, Zhang Q, Pan Y, Liu X, Zhu T. 2018. Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics18, 17933–17943.

Ma R, Zou J, Han Z, Yu K, Wu S, Li Z, Liu S, Niu S, Horwath W R, Zhu-Barker X. 2021. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Global Change Biology27, 855–867.

Nkebiwe P M, Weinmann M, Bar-Tal A, Mueller T. 2016. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Research196, 389–401.

Pan B B, Lam S K, Mosier A, Luo Y Q, Chen D L. 2016. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. AgricultureEcosystems & Environment232, 283–289.

Pedersen J, Nyord T, Feilberg A, Labouriau R. 2021. Analysis of the effect of air temperature on ammonia emission from band application of slurry. Environmental Pollution282, 117055.

Plautz J. 2018. Piercing the haze. Science361, 1060–1063.

Qiu S J, Ju X T, Lu X, Li L, Ingwersen J, Streck T, Christie P, Zhang F S. 2012. Improved nitrogen management for an intensive winter wheat/summer maize double-cropping system. Soil Science Society of America Journal76, 286–297.

Rochette P, Angers D A, Chantigny M H, Gasser M O, MacDonald J D, Pelster D E, Bertrand N. 2013. Ammonia volatilization and nitrogen retention: How deep to incorporate urea? Journal of Environmental Quality42, 1635–1642.

Sha Z, Liu H, Wang J, Ma X, Liu X, Misselbrook T. 2021. Improved soil–crop system management aids in NH3 emission mitigation in China. Environmental Pollution289, 117844.

Sutton M A, Oenema O, Erisman J W, Leip A, van Grinsven H, Winiwarter W. 2011. Too much of a good thing. Nature472, 159–161.

Ti C, Xia L, Chang S X, Yan X. 2019. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environmental Pollution245, 141–148.

Wang J, Kang J, Sha Z, Qu Z, Niu X, Xu W, Zhang H, Goulding K, Liu X. 2022. Mitigation of ammonia volatilization on farm using an N stabilizer - A demonstration in Quzhou, North China Plain. AgricultureEcosystems & Environment336, 108011.

Wu L, Chen X, Cui Z, Zhang W, Zhang F. 2014. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE9, e98481.

Xia L, Lam S K, Chen D, Wang J, Tang Q, Yan X. 2017a. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology23, 1917–1925.

Xia L, Lam S K, Yan X, Chen D. 2017b. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology51, 7450–7457.

Xu P, Li G, Houlton B Z, Ma L, Ai D, Zhu L, Luan B, Zhai S, Hu S, Chen A, Zheng Y. 2022. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environmental Science & Technology56, 2977–2989.

Yang G Y, Ji H T, Sheng J, Zhang Y F, Feng Y F, Guo Z, Chen L G. 2020. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment743, 140799.

Yao Y L, Zhang M, Tian Y H, Zhao M, Zhang B W, Zeng K, Zhao M, Yin B. 2018. Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Research218, 141–149.

Yin X, Zhang L J, Liu X J, Xu W, Ni Y X, Liu X Y. 2017. Nitrogen deposition in suburban croplands of Hebei Plain. Scientia Agricultura Sinica50, 698–710. (in Chinese)

Young M D, Ros G H, de Vries W. 2021. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. AgricultureEcosystems & Environment319, 107551.

Zeng W, Li J. 2020. Spatio-temporal distribution of ammonia (NH3) emissions in agricultural fields across North China. Environmental Science and Pollution Research27, 8129–8141.

Zhan X, Adalibieke W, Cui X, Winiwarter W, Reis S, Zhang L, Bai Z, Wang Q, Huang W, Zhou F. 2021. Improved estimates of ammonia emissions from global croplands. Environmental Science & Technology55, 1329–1338.

Zhang C, Ju X, Powlson D, Oenema O, Smith P. 2019. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology53, 6678–6687.

Zhang C, Rees R M, Ju X T. 2021. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutrient Cycling in Agroecosystems121, 151–165.

Zhang C, Song X T, Zhang Y Q, Wang D, Rees R M, Ju X T. 2022. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Global Change Biology28, 4409–4422.

Zhang X, Davidson E A, Mauzerall D L, Searchinger T D, Dumas P, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhang X, Zou T, Lassaletta L, Mueller N D, Tubiello F N, Lisk M D, Lu C Q, Conant R T, Dorich C D, Gerber J, Tian H Q, Bruulsema T, Maaz T M, Nishina K, Bodirsky B L, Popp A, Bouwman L, Beusen A, Chang J F, Havlik P, et al. 2021. Quantification of global and national nitrogen budgets for crop production. Nature Food2, 529–540.

Zhang X Y, Fang Q C, Zhang T, Ma W Q, Velthof G L, Hou Y, Oenema O, Zhang F S. 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology26, 888–900.

No related articles found!
No Suggested Reading articles found!