Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 1951-1966    DOI: 10.1016/j.jia.2023.02.031
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Advancing approach and toolbox in optimization of chloroplast genetic transformation technology
LIU Yu-xin1, 2, LI Fan1, 2, GAO Liang1, 3, TU Zhang-li1, 2, ZHOU Fei1, 2#, LIN Yong-jun1, 2

1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R.China

2 Hubei Hongshan Laboratory, Wuhan 430070, P.R.China.

3 Wuhan Towin Biotechnology Co., Ltd., Wuhan 430070, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

叶绿体作为一种离散、高度结构化、半自主的细胞器。叶绿体的小基因组能成为合成生物学极有前途的平台。叶绿体基因工程作为一种特殊的合成生物学手段,对重建植物体内各种复杂的代谢途径具有巨大的潜力,例如提高作物的光合能力,植物的抗逆性或者合成新的药物和疫苗。然而,许多植物的叶绿体遗传转化效率低或无法进行。因此,新的转化技术和工具正在不断被开发。为了进一步拓展和促进叶绿体基因工程的应用,本文综述了近年来在叶绿体遗传转化方面的新技术,并对选择合适的合成生物元件用以构建高效的叶绿体转化载体进行了探讨。



Abstract  

Chloroplast is a discrete, highly structured, and semi-autonomous cellular organelle. The small genome of chloroplast makes it an up-and-coming platform for synthetic biology. As a special means of synthetic biology, chloroplast genetic engineering shows excellent potential in reconstructing various sophisticated metabolic pathways within the plants for specific purposes, such as improving crop photosynthetic capacity, enhancing plant stress resistance, and synthesizing new drugs and vaccines. However, many plant species exhibit limited efficiency or inability in chloroplast genetic transformation. Hence, new transformation technologies and tools are being constantly developed. In order to further expand and facilitate the application of chloroplast genetic engineering, this review summarizes the new technologies in chloroplast genetic transformation in recent years and discusses the choice of appropriate synthetic biological elements  for the construction of efficient chloroplast transformation vectors.

Keywords:  chloroplast        genetic engineering        new technology        plasmid optimization        nanotechnology  
Received: 18 November 2022   Accepted: 12 January 2023
Fund: This work was funded by the Foundation of Hubei Hongshan Laboratory, China (2022hszd014) and the National Natural Science Foundation of China (31771752).
About author:  #Correspondence ZHOU Fei, Tel: +86-27-87280550, E-mail:zhoufei@mail.hzau.edu.cn

Cite this article: 

LIU Yu-xin, LI Fan, GAO Liang, TU Zhang-li, ZHOU Fei, LIN Yong-jun. 2023. Advancing approach and toolbox in optimization of chloroplast genetic transformation technology. Journal of Integrative Agriculture, 22(7): 1951-1966.

Adams C C, Stern D B. 1990. Control of mRNA stability in chloroplasts by 3´ inverted repeats: Effects of stem and loop mutations on degradation of psba mRNA in vitroNucleic Acids Research18, 6003–6010.

Aghdam E M, Hejazi M S, Barzegar A. 2016. Riboswitches: From living biosensors to novel targets of antibiotics. Gene592, 244–259.

Agrawal S, Karcher D, Ruf S, Erban A, Hertle A P, Kopka J, Bock R. 2022. Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids. Plant Physiology188, 637–652.

Ahrazem O, Zhu C, Huang X, Rubio-Moraga A, Capell T, Christou P, Gómez-Gómez L. 2022. Metabolic engineering of crocin biosynthesis in Nicotiana species. Frontiers in Plant Science13, 861140.

Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield S P. 2005. Contribution of 5´- and 3´-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Molecular Genetics and Genomics274, 625–636.

Bo Y, Wang K, Wu Y, Cao H, Cui Y, Wang L. 2020. Establishment of a chloroplast transformation system in Tisochrysis luteaJournal of Applied Phycology32, 2959–2965.

Bock R. 2014. Engineering chloroplasts for high-level foreign protein expression. Chloroplast Biotechnology1132, 93–106.

Bock R. 2017. Witnessing genome evolution: Experimental reconstruction of endosymbiotic and horizontal gene transfer. Annual Review of Genetics51, 1–22.

Bock R. 2021. Engineering chloroplasts for high-level constitutive or inducible transgene expression. Methods in Molecular Biology2317, 77–94.

Bock R. 2022. Transplastomic approaches for metabolic engineering. Current Opinion in Plant Biology66, 102185.

Boynton J E, Gillham N W, Harris E H, Hosler J P, Johnson A M, Jones A R, Randolphanderson B L, Robertson D, Klein T M, Shark K B, Sanford J C. 1988. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science240, 1534–1538.

Buhot L, Horvàth E, Medgyesy P, Lerbs-Mache S. 2006. Hybrid transcription system for controlled plastid transgene expression. Plant Journal46, 700–707.

Cao P, Wang D, Gao S, Liu X, Qiao Z, Xie Y, Dong M, Du T, Zhang X, Zhang R, Ji J. 2023. OSDXR interacts with OSMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice. Journal of Integrative Agriculture22, 669–678.

Chen C, Wang Y, He M, Li Z, Shen L, Li Q, Re D, Hu J, Zhu L, Zhang G, Gao Z, Zeng D, Guo L, Qian Q, Zhang Q. 2023. OSPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development. Journal of Integrative Agriculture22, 972–980.

Chen Q, Shen P, Bock R, Li S, Zhang J. 2022. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. Plant Cell Reports41, 1103–1114.

Cheng L, Li H P, Qu B, Huang T, Tu J X, Fu T D, Liao Y C. 2010. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Reports29, 371–381.

Chiyoda S, Linley P J, Yamato K T, Fukuzawa H, Yokota A, Kohchi T. 2007. Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. Suspension-culture cells. Transgenic Research16, 41–49.

Chowdhury F A, Trudeau M L, Guo H, Mi Z. 2018. A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nature Communications9, 1707.

Chumley T W, Palmer J D, Mower J P, Fourcade H M, Calie P J, Boore J L, Jansen R K. 2006. The complete chloroplast genome sequence of pelargonium×hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Molecular Biology and Evolution23, 2175–2190.

Cui Y, Qin S, Jiang P. 2014. Chloroplast transformation of Platymonas (tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS ONE9, e98607.

Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R. 2005. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine23, 1779–1783.

Daniell H, Lee S B, Panchal T, Wiebe P O. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. Journal of Molecular Biology311, 1001–1009.

Demirer G S, Zhang H, Matos J L, Goh N S, Cunningham F J, Sung Y, Chang R, Aditham A J, Chio L, Cho M J, Staskawicz B, Landry M P. 2019. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nature Nanotechnology14, 456–464.

Dively G P, Huang F, Oyediran I, Burd T, Morsello S. 2020. Evaluation of gene flow in structured and seed blend refuge systems of non-Bt and Bt corn. Journal of Pest Science93, 439–447.

Djanaguiraman M, Nair R, Giraldo J P, Prasad P V V. 2018. Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega3, 14406–14416.

Doetsch N A, Favreau M R, Kuscuoglu N, Thompson M D, Hallick R B. 2001. Chloroplast transformation in Euglena gracilis: Splicing of a group III twintron transcribed from a transgenic psbK operon. Current Genetics39, 49–60.

Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewski J P, Ferullo J M, Pelissier B, Sailland A, Tissot G. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnology Journal5, 118–133.

Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo J M, Tissot G. 2004. Generation of fertile transplastomic soybean. Plant Molecular Biology55, 479–489.

Economou C, Wannathong T, Szaub J, Purton S. 2014. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtiiChloroplast Biotechnology: Methods and Protocols. Humana Press, Totowa, NJ, USA. pp. 401–411.

Eibl C, Zou Z, Beck a, Kim M, Mullet J, Koop H U. 1999. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant Journal19, 333–345.

Emadpour M, Karcher D, Bock R. 2015. Boosting riboswitch efficiency by RNA amplification. Nucleic Acids Research43, e66.

Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. 2014. Horizontal genome transfer as an asexual path to the formation of new species. Nature511, 232–235.

Fuentes P, Zhou F, Erban A, Karcher D, Kopka J, Bock R. 2016. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. eLIFE5, e13664.

Gan Q, Jiang J, Han X, Wang S, Lu Y. 2018. Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanicaFrontiers in Plant Science9, 439.

Georgianna D R, Hannon M J, Marcuschi M, Wu S, Botsch K, Lewis A J, Hyun J, Mendez M, Mayfield S P. 2013. Production of recombinant enzymes in the marine alga Dunaliella tertiolectaAlgal Research (Biomass Biofuels and Bioproducts), 2, 2–9.

Giraldo J P, Landry M P, Faltermeier S M, McNicholas T P, Iverson N M, Boghossian A A, Reuel N F, Hilmer A J, Sen F, Brew J A, Strano M S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials13, 400–408.

Gottschamel J, Waheed M T, Clarke J L, Lössl A G. 2013. A novel chloroplast transformation vector compatible with the gateway® recombination cloning technology. Transgenic Research22, 1273–1278.

Gray B N, Ahner B A, Hanson M R. 2009. Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Research18, 559–572.

Gurdon C, Svab Z, Feng Y, Kumar D, Maliga P. 2016. Cell-to-cell movement of mitochondria in plants. Proceedings of the National Academy of Sciences of the United States of America113, 3395–3400.

Gutiérrez C. 1999. Geminivirus DNA replication. Cellular and Molecular Life Sciences56, 313–329.

Gutiérrez C L, Gimpel J, Escobar C, Marshall S H, Henríquez V. 2012. Chloroplast genetic tool for the green microalgae Haematococcus pluvialis (Chlorophyceae, Volvocales). Journal of Phycology48, 976–983.

Hertle A P, Haberl B, Bock R. 2021. Horizontal genome transfer by cell-to-cell travel of whole organelles. Science Advances7, eabd8215.

Herz S, Füssl M, Steiger S, Koop H U. 2005. Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Research14, 969–982.

Hirose T, Sugiura M. 1996. Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: Development of an in vitro translation system from tobacco chloroplasts. EMBO Journal15, 1687–1695.

Hirose T, Sugiura M. 1997. Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: A possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO Journal16, 6804–6811.

Hoelscher M P, Forner J, Calderone S, Krämer C, Taylor Z, Loiacono F V, Agrawal S, Karcher D, Moratti F, Kroop X, Bock R. 2022. Expression strategies for the efficient synthesis of antimicrobial peptides in plastids. Nature Communications13, 5856.

Hou B K, Zhou Y H, Wan L H, Zhang Z L, Shen G F, Chen Z H, Hu Z M. 2003. Chloroplast transformation in oilseed rape. Transgenic Research12, 111–114.

Howe C J, Nisbet R E, Barbrook A C. 2008. The remarkable chloroplast genome of dinoflagellates. Journal of Experimental Botany59, 1035–1045.

Hu P, An J, Faulkner M M, Wu H, Li Z, Tian X, Giraldo J P. 2020. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano14, 7970–7986.

Huang S, Sirikhachornkit A, Faris J D, Su X, Gill B S, Haselkorn R, Gornicki P. 2002. Phylogenetic analysis of the acetyl-coa carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Molecular Biology48, 805–820.

Jakubiec A, Sarokina A, Choinard S, Vlad F, Malcuit I, Sorokin A P. 2021. Replicating minichromosomes as a new tool for plastid genome engineering. Nature Plants7, 932–941.

Jeske H, Lütgemeier M, Preiss W. 2001. DNA forms indicate rolling circle and recombination-dependent replication of abutilon mosaic virus. EMBO Journal20, 6158–6167.

Jiang W, Brueggeman A J, Horken K M, Plucinak T M, Weeks D P. 2014. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtiiEukaryot Cell13, 1465–1469.

Jin S, Singh N D, Li L, Zhang X, Daniell H. 2015. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenaseV-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnology Journal13, 435–446.

Jo A, Ham S, Lee G H, Lee Y I, Kim S, Lee Y S, Shin J H, Lee Y. 2015. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Research International2015, 305716.

Kaeppler H F, Gu W, Somers D A, Rines H W, Cockburn A F. 1990. Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Reports9, 415–418.

Kahlau S, Bock R. 2008. Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell20, 856–874.

Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K. 2006. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Research15, 205–217.

Kang B C, Bae S J, Lee S, Lee J S, Kim A, Lee H, Baek G, Seo H, Kim J, Kim J S. 2021. Chloroplast and mitochondrial DNA editing in plants. Nature Plants7, 899–905.

Kato K, Marui T, Kasai S, Shinmyo A. 2007. Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coliJournal of Bioscience and Bioengineering104, 207–213.

Kaushal C, Abdin M Z, Kumar S. 2020. Chloroplast genome transformation of medicinal plant Artemisia annuaPlant Biotechnology Journal18, 2155–2157.

Knoblauch M, Hibberd J M, Gray J C, van Bel A J E. 1999. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nature Biotechnology17, 906–909.

Koman V B, Lew T T S, Wong M H, Kwak S Y, Giraldo J P, Strano M S. 2017. Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab on a Chip17, 4015–4024.

Kong F, Zhao H, Liu W, Li N, Mao Y. 2017. Construction of plastid expression vector and development of genetic transformation system for the seaweed Pyropia yezoensisMarine Biotechnology19, 147–156.

Kontoyiannis D, Pasparakis M, Pizarro T T, Cominelli F, Kollias G. 1999. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: Implications for joint and gut-associated immunopathologies. Immunity10, 387–398.

Kota S, Hao Q, Narra M, Anumula V, Rao A V, Hu Z, Abbagani S. 2019a. Improved plastid transformation efficiency in Scoparia dulcis L. Journal of Plant Biotechnology46, 323–330.

Kota S, Lakkam R, Kasula K, Narra M, Qiang H, Allini V R, Zanmin H, Abbagani S. 2019b. Construction of a species-specific vector for improved plastid transformation efficiency in Capsicum annuum L. 3 Biotech9, 226.

Kruys V, Marinx O, Shaw G, Deschamps J, Huez G. 1989. Translational blockade imposed by cytokine-derived UA-rich sequences. Science245, 852–855.

Kumar A U, Ling A P K. 2021. Gene introduction approaches in chloroplast transformation and its applications. Journal of Genetic Engineering and Biotechnology19, 148.

Kuroda H, Maliga P. 2001. Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Research29, 970–975.

Kuroda H, Sugiura M. 2014. Processing of the 5´-UTR and existence of protein factors that regulate translation of tobacco chloroplast psbN mRNA. Plant Molecular Biology86, 585–593.

Kwak S Y, Lew T T S, Sweeney C J, Koman V B, Wong M H, Bohmert-Tatarev K, Snell K D, Seo J S, Chua N H, Strano M S. 2019. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nature Nanotechnology14, 447–455.

LaManna L M, Parulekar M S, Maliga P. 2022. Multiple sgRNAs for one-step inactivation of the duplicated acetyl-coenzyme a carboxylase 2 (ACC2) genes in Brassica napusPlant Physiology189, 178–187.

Lapidot M, Raveh D, Sivan A, Arad S M, Shapira M. 2002. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiology129, 7–12.

Leslie M. 2018. ‘Old’ genome editors might treat mitochondrial diseases. Science361, 1302.

Li D, Han X, Zuo J, Xie L, He R, Gao J, Chang L, Yuan L, Cao M. 2011. Construction of rice site-specific chloroplast transformation vector and transient expression of EGFP gene in Dunaliella salinaJournal of Biomedical Nanotechnology7, 801–806.

Lin C P, Huang J P, Wu C S, Hsu C Y, Chaw S M. 2010. Comparative chloroplast genomics reveals the evolution of pinaceae genera and subfamilies. Genome Biology and Evolution2, 504–517.

Lin C H, Chen Y Y, Tzeng C C, Tsay H S, Chen L J. 2003. Expression of a Bacillus thuringiensis cry1C gene in plastid confers high insecticidal efficacy against tobacco cutworm - A spodoptera insect. Botanical Bulletin of Academia Sinica44, 199–210.

Liu C W, Lin C C, Chen J J, Tseng M J. 2007. Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Reports26, 1733–1744.

Lössl A, Bohmert K, Harloff H, Eibl C, Mühlbauer S, Koop H U. 2005. Inducible trans-activation of plastid transgenes: Expression of the R. eutropha phd operon in transplastomic tobacco. Plant Cell Physiology46, 1462–1471.

Lössl A, Eibl C, Harloff H J, Jung C, Koop H U. 2003. Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): Significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Reports21, 891–899.

Lu Y, Stegemann S, Agrawal S, Karcher D, Ruf S, Bock R. 2017. Horizontal transfer of a synthetic metabolic pathway between plant species. Current Biology27, 3034–3041.e3033.

Magee A M, Coyne S, Murphy D, Horvath E M, Medgyesy P, Kavanagh T A. 2004. T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Research13, 325–337.

Maliga P. 2021. Engineering the plastid and mitochondrial genomes of flowering plants. Nature Plants8, 996–1006.

Mandal M, Lee M, Barrick J E, Weinberg Z, Emilsson G M, Ruzzo W L, Breaker R R. 2004. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science306, 275–279.

De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M. 2009. Genetic transformation of the sugar beet plastome. Transgenic Research18, 17–30.

Mayr C. 2019. What are 3´ UTRs doing? Cold Spring Harbor Perspectives in Biology11, a034728.

Melnyk C W, Meyerowitz E M. 2015. Plant grafting. Current Biology25, R183–R188.

Merchant S, Bogorad L. 1987. The Cu(ii)-repressible plastidic cytochrome c. Cloning and sequence of a complementary DNA for the pre-apoprotein. Journal of Biological Chemistry262, 9062–9067.

Mignone F, Gissi C, Liuni S, Pesole G. 2002. Untranslated regions of mRNAs. Genome Biology3, Reviews0004.

Min S R, Davarpanah S J, Jung S H, Park Y I, Liu J R, Jeong W J. 2015a. An episomal vector system for plastid transformation in higher plants. Plant Biotechnology Reports9, 443–449.

Min S R, Jung S H, Liu J R, Jeong W J. 2015b. The fate of extrachromosomal DNAs in the progeny of plastid-transformed tobacco plants. Plant Biotechnology Reports9, 431–442.

Miroshnichenko D, Pushin A, Dolgov S. 2016. Assessment of the pollen-mediated transgene flow from the plants of herbicide resistant wheat to conventional wheat (Triticum aestivum L.). Euphytica209, 71–84.

Mok Y G, Hong S, Bae S J, Cho S I, Kim J S. 2022. Targeted A-to-G base editing of chloroplast DNA in plants. Nature Plants8, 1378–1384.

Monde R A, Greene J C, Stern D B. 2000. The sequence and secondary structure of the 3´-UTR affect 3´-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Molecular Biology44, 529–542.

Morgenfeld M M, Vater C F, Alfano E F, Boccardo N A, Bravo-Almonacid F F. 2020. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants. Transgenic Research29, 295–305.

Mortimer C L, Misawa N, Perez-Fons L, Robertson F P, Harada H, Bramley P M, Fraser P D. 2017. The formation and sequestration of nonendogenous ketocarotenoids in transgenic Nicotiana glaucaPlant Physiology173, 1617–1635.

Mühlbauer S K, Koop H U. 2005. External control of transgene expression in tobacco plastids using the bacterial lac repressor. Plant Journal43, 941–946.

Muralikrishna N, Srinivas K, Kumar K B, Sadanandam A. 2016. Stable plastid transformation in Scoparia dulcis L. Physiology and Molecular Biology of Plants22, 575–581.

Nakazato I, Okuno M, Yamamoto H, Tamura Y, Itoh T, Shikanai T, Takanashi H, Tsutsumi N, Arimura S I. 2021. Targeted base editing in the plastid genome of Arabidopsis thalianaNature Plants7, 906–913.

Nam Y S, Magyar A P, Lee D, Kim J W, Yun D S, Park H, Pollom T S Jr, Weitz D A, Belcher A M. 2010. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nature Nanotechnology5, 340–344.

Narra M, Kota S, Velivela Y, Ellendula R, Allini V R, Abbagani S. 2018. Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech8, 140.

Newell C A, Birch-Machin I, Hibberd J M, Gray J C. 2003. Expression of green fluorescent protein from bacterial and plastid promoters in tobacco chloroplasts. Transgenic Research12, 631–634.

Nugent G D, Coyne S, Nguyen T T, Kavanagh T A, Dix P J. 2006. Nuclear and plastid transformation of Brassica oleracea var. Botrytis (cauliflower) using peg-mediated uptake of DNA into protoplasts. Plant Science170, 135–142.

Occhialini A, Pfotenhauer A C, Li L, Harbison S A, Lail A J, Burris J N, Piasecki C, Piatek A A, Daniell H, Stewart C N Jr, Lenaghan S C. 2022. Mini-synplastomes for plastid genetic engineering. Plant Biotechnology Journal20, 360–373.

Occhialini A, Piatek A A, Pfotenhauer A C, Frazier T P, Stewart C N Jr, Lenaghan S C. 2019. Mochlo: a versatile, modular cloning toolbox for chloroplast biotechnology. Plant Physiology179, 943–957.

Okumura S, Sawada M, Park Y W, Hayashi T, Shimamura M, Takase H, Tomizawa K. 2006. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Research15, 637–646.

Pradhan S, Chakraborty A, Sikdar N, Chakraborty S, Bhattacharyya J, Mitra J, Manna A, Dutta Gupta S, Sen S K. 2016. Marker-free transgenic rice expressing the vegetative insecticidal protein (Vip) of Bacillus thuringiensis shows broad insecticidal properties. Planta244, 789–804.

Quesada-Vargas T, Ruiz O N, Daniell H. 2005. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiology138, 1746–1762.

Quinn J M, Eriksson M, Moseley J L, Merchant S. 2002. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Plant Physiology128, 463–471.

Ramundo S, Casero D, Mühlhaus T, Hemme D, Sommer F, Crèvecoeur M, Rahire M, Schroda M, Rusch J, Goodenough U, Pellegrini M, Perez-Perez M E, Crespo J L, Schaad O, Civic N, Rochaix J D. 2014. Conditional depletion of the Chlamydomonas chloroplast ClpP protease activates nuclear genes involved in autophagy and plastid protein quality control. Plant Cell26, 2201–2222.

Ramundo S, Rahire M, Schaad O, Rochaix J D. 2013. Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in ChlamydomonasPlant Cell25, 167–186.

Ramundo S, Rochaix J D. 2015. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Methods in Enzymology550, 267–281.

Rebbeck C A, Leroi A M, Burt A. 2011. Mitochondrial capture by a transmissible cancer. Science331, 303.

Ren K, Xu W, Ren B, Fu J, Jiang C, Zhang J. 2022. A simple technology for plastid transformation with fragmented DNA. Journal of Experimental Botany73, 6078–6088.

Rochaix J D, Surzycki R, Ramundo S. 2021. Regulated chloroplast gene expression in ChlamydomonasMethods in Molecular Biology2317, 305–318.

Rojas M, Yu Q, WilliamsCarrier R, Maliga P, Barkan A. 2019. Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes. Nature Plants5, 505–511.

Rott R, Liveanu V, Drager R G, Stern D B, Schuster G. 1998. The sequence and structure of the 3´-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Molecular Biology36, 307–314.

Ruf S, Forner J, Hasse C, Kroop X, Seeger S, Schollbach L, Schadach A, Bock R. 2019. High-efficiency generation of fertile transplastomic Arabidopsis plants. Nature Plants5, 282–289.

Ruhlman T, Verma D, Samson N, Daniell H. 2010. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiology152, 2088–2104.

Santana I, Wu H, Hu P, Giraldo J P. 2020. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nature Communications11, 2045.

Scharff L B, Ehrnthaler M, Janowski M, Childs L H, Hasse C, Gremmels J, Ruf S, Zoschke R, Bock R. 2017. Shine-dalgarno sequences play an essential role in the translation of plastid mRNAs in tobacco. Plant Cell29, 3085–3101.

Schmitz-Linneweber C, Kushnir S, Babiychuk E, Poltnigg P, Herrmann R G, Maier R M. 2005. Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA. Plant Cell17, 1815–1828.

Schneider A, Stelljes C, Adams C, Kirchner S, Burkhard G, Jarzombski S, Broer I, Horn P, Elsayed A, Hagl P, Leister D, Koop H U. 2015. Low frequency paternal transmission of plastid genes in BrassicaceaeTransgenic Research24, 267–277.

Sharwood R E, Hotto A M, Bollenbach T J, Stern D B. 2011. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S RNA maturation in vitroRNA17, 230–243.

Sidorov V, Armstrong C, Ream T, Ye X, Saltarikos A. 2018. “Cell grafting”: a new approach for transferring cytoplasmic or nuclear genome between plants. Plant Cell Reports37, 1077–1089.

Sidorov V A, Kasten D, Pang S Z, Hajdukiewicz P T, Staub J M, Nehra N S. 1999. Technical advance: stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant Journal19, 209–216.

Sikdar S R, Serino G, Chaudhuri S, Maliga P. 1998. Plastid transformation in Arabidopsis thalianaPlant Cell Reports18, 20–24.

Singh A K, Verma S S, Bansal K C. 2010. Plastid transformation in eggplant (Solanum melongena L.). Transgenic Research19, 113–119.

Skarjinskaia M, Svab Z, Maliga P. 2003. Plastid transformation in lesquerella fendleri, an oilseed BrassicaceaTransgenic Research12, 115–122.

Staub J M, Maliga P. 1994. Extrachromosomal elements in tobacco plastids. Proceedings of the National Academy of Sciences of the United States of America91, 7468–7472.

Stegemann S, Bock R. 2009. Exchange of genetic material between cells in plant tissue grafts. Science324, 649–651.

Stegemann S, Keuthe M, Greiner S, Bock R. 2012. Horizontal transfer of chloroplast genomes between plant species. Proceedings of the National Academy of Sciences of the United States of America109, 2434–2438.

Sugiura C, Sugita M. 2004. Plastid transformation reveals that moss tRNA(Arg)-CCG is not essential for plastid function. Plant Journal40, 314–321.

Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J D, Ajam T, Surzycki S. 2009. Factors effecting expression of vaccines in microalgae. Biologicals37, 133–138.

Svab Z, Hajdukiewicz P, Maliga P. 1990. Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences of the United States of America87, 8526–8530.

Tan A S, Baty J W, Dong L F, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar E A, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, et al. 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabolism21, 81–94.

Tangphatsornruang S, Birch-Machin I, Newell C A, Gray J C. 2011. The effect of different 3´ untranslated regions on the accumulation and stability of transcripts of a GFP transgene in chloroplasts of transplastomic tobacco. Plant Molecular Biology76, 385–396.

Thyssen G, Svab Z, Maliga P. 2012. Cell-to-cell movement of plastids in plants. Proceedings of the National Academy of Sciences of the United States of America109, 2439–2443.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America108, 20260–20264.

Tungsuchat-Huang T, Maliga P. 2021. Plastid marker gene excision in the tobacco shoot apex by agrobacterium-delivered cre recombinase. Methods in Molecular Biology2317, 177–193.

Valkov V T, Gargano D, Manna C, Formisano G, Dix P J, Gray J C, Scotti N, Cardi T. 2011. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5´ and 3´ regulatory sequences. Transgenic Research20, 137–151.

Valkov V T, Scotti N, Kahlau S, Maclean D, Grillo S, Gray J C, Bock R, Cardi T. 2009. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: Transcriptional and posttranscriptional control. Plant Physiology150, 2030–2044.

Verhounig A, Karcher D, Bock R. 2010. Inducible gene expression from the plastid genome by a synthetic riboswitch. Proceedings of the National Academy of Sciences of the United States of America107, 6204–6209.

Wang Y, Wei Z, Xing S. 2018. Stable plastid transformation of rice, a monocot cereal crop. Biochemical and Biophysical Research Communications503, 2376–2379.

Wannathong T, Waterhouse J C, Young R E B, Economou C K, Purton S. 2016. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Applied Microbiology and Biotechnology100, 5467–5477.

Winkler W C, Breaker R R. 2005. Regulation of bacterial gene expression by riboswitches. Annual Review of Microbiology59, 487–517.

Wong M H, Misra R P, Giraldo J P, Kwak S Y, Son Y, Landry M P, Swan J W, Blankschtein D, Strano M S. 2016. Lipid exchange envelope penetration (leep) of nanoparticles for plant engineering: a universal localization mechanism. Nano Letters16, 1161–1172.

Wu H, Shabala L, Shabala S, Giraldo J P. 2018. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science: Nano5, 1567–1583.

Wu H, Tito N, Giraldo J P. 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano11, 11283–11297.

Wurbs D, Ruf S, Bock R. 2007. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal49, 276–288.

Xie W H, Zhu C C, Zhang N S, Li D W, Yang W D, Liu J S, Sathishkumar R, Li H Y. 2014. Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom Phaeodactylum tricornutumMarine Biotechnology16, 538–546.

Xing S, Wei Z, Wang Y, Liu Y, Lin C. 2014. Integration and expression of GFP in the plastid of Medicago sativa L. Methods in Molecular Biology1132, 375–387.

Xu S, Zhang Y, Li S, Chang L, Wu Y, Zhang J. 2020. Plastid-expressed Bacillus thuringiensis (Bt) cry3Bb confers high mortality to a leaf eating beetle in poplar. Plant Cell Reports39, 317–323.

Yang H, Gray B N, Ahner B A, Hanson M R. 2013. Bacteriophage 5´ untranslated regions for control of plastid transgene expression. Planta237, 517–527.

Yoo B C, Yadav N S, Orozco E M Jr, Sakai H. 2020. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ8, e8362.

Yu Q, LaManna L M, Kelly M E, Lutz K A, Maliga P. 2019. New tools for engineering the Arabidopsis plastid genome. Plant Physiology181, 394–398.

Yu Q, Lutz K A, Maliga P. 2017. Efficient plastid transformation in Arabidopsis. Plant Physiology175, 186–193.

Yu Y, Yu P C, Chang W J, Yu K, Lin C S. 2020. Plastid transformation: How does it work? Can it be applied to crops? What can it offer? International Journal of Molecular Sciences21, 4854.

Yukawa M, Kuroda H, Sugiura M. 2007. A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitroPlant Journal49, 367–376.

Zhang Y, Qi G, Yao L, Huang L, Wang J, Gao W. 2022. Effects of metal nanoparticles and other preparative materials in the environment on plants: from the perspective of improving secondary metabolites. Journal of Agricultural and Food Chemistry70, 916–933.

Zhang Z, Cavalier-Smith T, Green B R. 2001. A family of selfish minicircular chromosomes with jumbled chloroplast gene fragments from a dinoflagellate. Molecular Biology and Evolution18, 1558–1565.

Zhang Z, Green B R, Cavalier-Smith T. 1999. Single gene circles in dinoflagellate chloroplast genomes. Nature400, 155–159.

Zienkiewicz M, Krupnik T, Drożak A, Golke A, Romanowska E. 2017. Transformation of the cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. Plant Molecular Biology93, 171–183.

Zubkot M K, Zubkot E I, van Zuilen K, Meyer P, Day A. 2004. Stable transformation of petunia plastids. Transgenic Research13, 523–530.

No related articles found!
No Suggested Reading articles found!