Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (11): 2469-2480    DOI: 10.1016/S2095-3119(15)61306-5
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification and expression analysis of group III WRKY transcription factors in cotton
DOU Ling-ling1, 2, GUO Ya-ning1, 2, Ondati Evans2, PANG Chao-you2, WEI Heng-ling2, SONG Mei-zhen2, FAN Shu-li2, YU Shu-xun1, 2
1 College of Agronomy, Northwest A & F University, Yangling 712100, P.R.China
2 State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Siences, Anyang 455000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract      The WRKY proteins constitute a large family of transcription factors in plants containing highly conserved WRKYGQK sequences and zinc-finger-like motifs. To comprehensively study WRKY III genes in cotton, we analyzed the genome sequences of Gossypium hirsutum, G. raimondii and G. arboreum. According to the three genome sequences, 18 group III GhWRKY genes were identified in G. hirsutum, 12 both in G. raimondii and G. arboreum. Phylogenetic and motif analysis showed that proteins with high similarities could be clustered together and had the same motif components. The ratios of non-synonymous (Ka) to synonymous (Ks) of the GhWRKY to GrWRKY or GaWRKY were lower than 1, which indicated that group III WRKY genes in Gossypium species are under purifying selection. Expression analysis revealed that group III GhWRKY genes expressed during fiber development and leaf senescence, and most of them could be induced by salicylic acid (SA), jasmonic acid (JA), ethylene, abscisic acid (ABA), mannitol, and NaCl both in roots and cotyledons. Our study gives a briefly introduction on cotton group III WRKY genes and implicates their potential function in cotton fiber development, leaf senescence and abiotic stresses.
Keywords:  Gossypium        WRKY        phylogenetic analysis        expression analysis        development        abiotic stress  
Received: 13 October 2015   Accepted:

We appreciate the National High-Tech R&D Program of China (2013AA102601) for the financial support provided to this project.

Corresponding Authors:  YU Shu-xun, Tel/Fax: +86-372-2525363, E-mail:   
About author:  DOU Ling-ling, E-mail:;

Cite this article: 

DOU Ling-ling, GUO Ya-ning, Ondati Evans, PANG Chao-you, WEI Heng-ling, SONG Mei-zhen, FAN Shu-li, YU Shu-xun. 2016. Identification and expression analysis of group III WRKY transcription factors in cotton. Journal of Integrative Agriculture, 15(11): 2469-2480.

Bao Y, Hu G J, Flagel L E, Salmon A, Bezanilla M, Paterson A H, Wang Z N, Wendel J F. 2011. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proceedings of the National Academy of Sciences of the United States of America, 108, 21152–21157.

Besseau S, Li J, Palva E T. 2012. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 63, 2667–2679.

Cai C P, Niu E L, Du H, Zhao L, Feng Y, Guo W Z. 2014. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivivated tetraploid cotton. The Crop Journal, 2, 87–101.

Dai X, Wang Y, Zhang W H. 2015. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. Journal of Experimental Botany, 67, 947-960.

Ding M Q, Chen J D, Jiang Y R, Lin L F, Cao Y F, Wang M H, Zhang Y T, Rong J K, Ye W W. 2015. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium. Molecular Genetics Genomics, 290, 151–171.

Dong C J, Li L, Shang Q M, Liu X Y, Zhang Z G. 2014. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta, 240, 687–700.

Dou L L, Zhang X H, Pang C Y, Song M Z, Wei H L, Fan S L, Yu S X. 2014. Genome-wide analysis of the WRKY gene family in cotton. Molecular Genetics and Genomics, 289, 1103–1121.

Duan Q Q, Jiang W, Ding M, Lin Y, Huang D F. 2014. Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings. PLOS ONE, 9, e111165.

Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5, 199–206.

Fan X Q, Guo Q, Xu P, Gong Y Y, Shu H M, Yang Y, Ni W C, Zhang X G, Shen X L. 2015. Transcriptome-wide identification of salt-responsive members of the WRKY gene family in Gossypium aridum. PLOS ONE, 10, e0126148

Guo R Y, Yu F F, Gao Z, An H L, Cao X C, Guo X Q. 2011. GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Molecular Biology Reports, 38, 49–58.

He H S, Dong Q, Shao Y H, Jiang H Y, Zhu S W, Cheng B J, Xiang Y. 2012. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Reports, 31, 1199–1217.

Hendrix B, Stewart J M. 2005. Estimation of the nuclear DNA content of Gossypium species. Annal of Botany, 95, 789–797.

Herve M R, Delourme R, Gravot A, Marnet N, Berardocco S, Cortesero A M. 2014. Manipulating feeding stimulation to protect crops against insect pests? Journal of Chemical Ecology, 40, 1220–1231.

Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2008. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Molecular Genetics and Genomics, 279, 303–312.

Hovav R, Udall J A, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel J F. 2008. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genetics, 4, e25.

Hu G J, Koh J, Yoo M J, Grupp K, Chen S X, Wendel J F. 2013. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytologist, 200, 570–582.

Hu Y R, Dong Q Y, Yu D Q. 2012. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Science, 185, 288–297.

Kalde M, Barth M, Somssich I E, Lippok B. 2003. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Molecular Plant-Microbe Interactions, 16, 295–305.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: An information aesthetic for comparative genomics. Genome Research, 19, 1639–1645.

Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, et al. 2015. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 33, 524–530.

Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, et al. 2014. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 46, 567–572.

Li J, Besseau S, Toronen P, Sipari N, Kollist H, Holm L, Palva E T. 2013. Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytologist, 200, 455–472.

Li J, Brader G, Palva E T. 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(–??C) method. Methods, 25, 402–408.

Ma J, Zhang D, Shao Y, Liu P, Jiang L, Li C. 2014. Genome-wide analysis of the WRKY transcription factors in Aegilops tauschii. Cytogenetics and Genome Research, 144, 243–253.

Ma W X, Noble W S, Bailey T L. 2014. Motif-based analysis of large nucleotide data sets using MEME-ChIP. Nature Protocols, 9, 1428–1450.

Martha M V, Alisa H, Eric A S, Nicole J D, Shawn C, James S, Vitor F M, Jay S, Maritza R, Hans T A, Leon H A, Peter E A T. 2014. Effects of elevated CO2 on maize defence against mycotoxigenic Fusarium verticillioides. Plant, Cell and Environment, 37, 2691–2706.

Miura K, Tada Y. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4.

Moreno J E, Ballare C L. 2014. Phytochrome regulation of plant immunity in Vegetation Canopies. Journal of Chemical Ecology, 40, 848–857.

Muthamilarasan M, Bonthala V S, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M. 2015. Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Frontiers in Plant Science, 6, 910.

Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D C, Llewellyn D, Showmaker K C, Shu S Q, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G J, et al. 2012. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 492, 423–427.

Rehmeyer C J, Li W X, Kusaba M, Farman M L. 2009. The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae: revised gene structure reveals a novel TLH-specific protein motif. Current Genetics, 55, 253–262.

Shi W N, Liu D D, Hao L L, Wu C A, Guo X Q, Li H. 2014. GhWRKY39, a member of the WRKY transcription factor family in cotton, has a positive role in disease resistance and salt stress tolerance. Plant Cell Tissue and Organ Culture, 118, 17–32.

Shiono K, Yamauchi T, Yamazaki S, Mohanty B, Malik A I, Nagamura Y, Nishizawa N K, Tsutsumi N, Colmer T D, Nakazono M. 2014. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). Journal of Experimental Botany, 65, 4795–4806.

Singh B, Avci U, Inwood S E E, Grimson M J, Landgraf J, Mohnen D, Sorensen I, Wilkerson C G, Willats W G T, Haigler C H. 2009. A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiology, 150, 684–699.

Song H, Wang P F, Nan Z B, Wang X J. 2014a. The WRKY transcription factor genes In Lotus Japonicus. Internal Journal of Genomics, doi: 10.1155/2014/420128

Song M Z, Fan S L, Pang C Y, Wei H L, Yu S X. 2014b. Genetic analysis of the antioxidant enzymes, methane dicarboxylic aldehyde (MDA) and chlorophyll content in leaves of the short season cotton (Gossypium hirsutum L.). Euphytica, 198, 153–162.

Strader L C, Chen G L, Bartel B. 2010. Ethylene directs auxin to control root cell expansion. The Plant Journal, 64, 874–884.

Sun J, An H, Shi W, Guo X, Li H. 2012. Molecular cloning and characterization of GhWRKY11, a gene implicated in pathogen responses from cotton. South African Journal of Botany, 81, 113–123.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

Van Aken O, Zhang B T, Law S, Narsai R, Whelan J. 2013. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiology, 162, 254–271.

Wang L N, Zhu W, Fang L C, Sun X M, Su L Y, Liang Z C, Wang N, Londo J P, Li S H, Xin H P. 2014. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. BMC Plant Biology, 14, 103.

Wang X L, Yan Y, Li Y Z, Chu X Q, Wu C G, Guo X Q. 2014. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to Ralstonia solanacearum infection in transgenic Nicotiana benthamiana. PLOS ONE, 9, e93577.

Wang Y Y, Feng L, Zhu Y X, Li Y, Yan H W, Xiang Y. 2015. Comparative genomic analysis of the WRKY III gene family in populus, grape, Arabidopsis and rice. Biology Direct, 10, 48.

Wei K F, Chen J, Chen Y F, Wu L J, Xie D X. 2012. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research, 19, 153–164.

Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li F G. 2014. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist, 203, 437–448.

Yu F F, Huaxia Y F, Lu W J, Wu C G, Cao X C, Guo X Q. 2012. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biology, 12, 144.

Zhang Y J, Wang L J. 2005. The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. Bmc Evolutionary Biology, 5, 1.

Zhu H Y, Han X Y, Lü J H, Zhao L A, Xu X Y, Zhang T Z, Guo W Z. 2011. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC Plant Biology, 11, 40.

Zhu Y N, Shi D Q, Ruan M B, Zhang L L, Meng Z H, Liu J, Yang W C. 2013. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic dtresses in cotton (Gossypium hirsutum L.). PLOS ONE, 8, e80218.
[1] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[2] LI Zhi-qi, Xie Qian, YAN Jia-hui, CHEN Jian-qing, CHEN Qing-xi. Genome-wide identification and characterization of the abiotic-stress-responsive lipoxygenase gene family in diploid woodland strawberry (Fragaria vesca)[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1982-1996.
[3] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
[4] LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng. Response of leaf stomatal and mesophyll conductance to abiotic stress factors[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2787-2804.
[5] XIAO Qian-lin, LI Zhen, WANG Ya-yun, HOU Xian-bin, WEI Xi-mei, ZHAO Xiao, HUANG Lei, GUO Yan-jun, LIU Zhi-zhai. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.) [J]. >Journal of Integrative Agriculture, 2022, 21(10): 2848-2864.
[6] SHI Bei-bei, WANG Juan, GAO Hai-feng, ZHANG Xiao-juan, WANG Yang, MA Qing. The TaFIM1 gene mediates wheat resistance against Puccinia striiformis f. sp. tritici and responds to abiotic stress[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1849-1857.
[7] LI Yong-ping, LIU Tian-jia, LUO Hui-feng, LIU Sheng-cai . The transcriptional landscape of cultivated strawberry (Fragaria×ananassa) and its diploid ancestor (Fragaria vesca) during fruit development[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1540-1553.
[8] HE Li-mei, WANG Teng-li, CHEN Yu-chao, GE Shi-shuai, Kris A. G. WYCKHUYS, WU Kong-ming. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 736-744.
[9] WANG Xi-cheng, WU Wei-min, ZHOU Bei-bei, WANG Zhuang-wei, QIAN Ya-ming, WANG Bo, YAN Li-chun. Genome-wide analysis of the SCPL gene family in grape (Vitis vinifera L.)[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2666-2679.
[10] MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(1): 46-54.
[11] QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1704-1720.
[12] SU Hong-hua, JIANG Tao, SUN Yu, GU Hui-jie, WU Jiao-jiao, YANG Yi-zhong. Effect of three insect-resistant maizes expressing Cry1Ie, Cry1Ab/Cry2Aj and Cry1Ab on the growth and development of armyworm Mythimna separata (Walker)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1842-1849.
[13] ZHAO Xiao-fan. Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1417-1428.
[14] FANG Zheng-wu, HE Yi-qin, LIU Yi-ke, JIANG Wen-qiang, SONG Jing-han, WANG Shu-ping, MA Dong-fang, YIN Jun-liang. Bioinformatic identification and analyses of the non-specific lipid transfer proteins in wheat[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1170-1185.
[15] FAN Xu-dong, ZHANG meng-yan, ZHANG Zun-ping, REN Fang, HU Guo-jun, DONG Ya-feng. Prevalence and genetic diversity of grapevine fabavirus isolates from different grapevine cultivars and regions in China[J]. >Journal of Integrative Agriculture, 2020, 19(3): 768-774.
No Suggested Reading articles found!