Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (6): 1417-1428    DOI: 10.1016/S2095-3119(19)62860-1
Special Focus: Physiology and interaction of insects with environmental factors Advanced Online Publication | Current Issue | Archive | Adv Search |
Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera
ZHAO Xiao-fan
Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Lepidoptera, with 0.16 million species, is the second largest order of insecta.  This order includes silk worms, butterflies, and many agricultural pests.  The cotton bollworm, Helicoverpa armigera (Hübner) is one of the pests in Lepidoptera that seriously harms cotton plant and other crops in China and other countries.  This pest develops resistance to chemical insecticides rapidly.  Bacillus thuringiensis (Bt) transgenic cotton plants are developed to control H. armigera population in the field.  However, during the past years, the rapid evolution of Bt toxin resistance is observed in H. armigera in transgenic cotton fields.  New approaches for the development of new environmentally friendly insecticides to control H. armigera have become necessary, and the molecular mechanisms underlying the development and physiological processes of this species need to be further understood.  Considerable progress in the study of H. armigera development and physiology has been achieved in the last decade.  This mini-review summarizes the main findings on the molecular mechanisms of hormonal regulation of the development of H. armigera to present new target genes for developing new approaches to control the pest.
Keywords:  Helicoverpa armigera        Lepidoptera        hormonal regulation        development        pest control  
Received: 16 August 2019   Accepted:
Fund: This study received the support from the National Natural Science Foundation of China (31730083 and 31572328)
Corresponding Authors:  Correspondence ZHAO Xiao-fan, E-mail:   

Cite this article: 

ZHAO Xiao-fan. 2020. Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera. Journal of Integrative Agriculture, 19(6): 1417-1428.

Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, George R A, Lewis S E, Richards S, Ashburner M, Henderson S N, Sutton G G, Wortman J R, Yandell M D, Zhang Q, Chen L X, et al. 2000. The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.
Ahmad S, Cheema H M N, Khan A A, Khan R S A, Ahmad J N. 2019. Resistance status of Helicoverpa armigera against Bt cotton in Pakistan. Transgenic Research, 28, 199–212.
Alvarez-Rendon J P, Salceda R, Riesgo-Escovar J R. 2018. Drosophila melanogaster as a model for diabetes type 2 progression. BioMed Research International, 24, 1417528.
Bally J, McIntyre G J, Doran R L, Lee K, Perez A, Jung H, Naim F, Larrinua I M, Narva K E, Waterhouse P M. 2016. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Frontiers in Plant Science, 7, 1453.
Bargmann C I. 1998. Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.
Bathgate R A D. 2006. Evolution, structure, and function of the relaxin family peptides and their receptors. Biology of Reproduction, SI, 61.
Beischlag T V, Wang S, Rose D W, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson W E, Probst M R, Rosenfeld M G, Hankinson O. 2002. Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Molecular and Cellular Biology, 22, 4319–4333.
Bengyella L, Yekwa E L, Iftikhar S, Nawaz K, Jose R C, Fonmboh D J, Tambo E, Roy P. 2018. Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century.
3 Biotech, 8, 464.
Blundell T L, Humbel R E. 1980. Hormone families: pancreatic hormones and homologous growth-factors. Nature, 287, 781–787.
Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology, 11, 213–221.
Cai M J, Dong D J, Wang Y, Liu P C, Liu W, Wang J X, Zhao X F. 2014a. G-protein-coupled receptor participates in 20-hydroxyecdysone signaling on the plasma membrane. Cell Communication and Signaling, 12, 9.
Cai M J, Liu W, He H J, Wang J X, Zhao X F. 2012. Mod (mdg4) participates in hormonally regulated midgut programmed cell death during metamorphosis. Apoptosis, 17, 1327–1339.
Cai M J, Liu W, Pei X Y, Li X R, He H J, Wang J X, Zhao X F. 2014b. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified Broad protein. Journal of Biological Chemistry, 289, 26630–26641.
Cai M J, Zhao W L, Jing Y P, Song Q, Zhang X Q, Wang J X, Zhao X F. 2016. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development, 143, 1005–1015.
Di Cara F, King-Jones K. 2013. How clocks and hormones act in concert to control the timing of insect development. Developmental Timing, 105, 1–36.
Chai L Q, Tian Y Y, Yang D T, Wang J X, Zhao X F. 2008. Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. Developmental and Comparative Immunology, 32, 71–83.
Champlin D T, Truman J W. 1998. Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta. Development, 125, 2009–2018.
Chapman A D. 2009. Numbers of Living Species in Australia and the World. 2nd ed. Australian Biodiversity Information Services, Toowoomba, Australia,  Canberra. p.81.
Chang H T, Liu Y, Ai D, Jiang X C, Dong S L, Wang G R. 2017. A pheromone antagonist regulates optimal mating time in the moth Helicoverpa armigera. Current Biology, 27, 1610–1615.
Chen C, Jack J, Garofalo R S. 1996. The Drosophila insulin receptor is required for normal growth. Endocrinology, 137, 846–856.
Chen C H, Di Y Q, Shen Q Y, Wang J X, Zhao X F. 2019. The steroid hormone 20-hydroxyecdysone induces phosphorylation and aggregation of stromal interacting molecule 1 for store-operated calcium entry. Journal of Biological Chemistry, 11, 14922–14936.
Chen C H, Pan J, Di Y Q, Liu W, Hou L, Wang J X, Zhao X F. 2017. Protein kinase C delta phosphorylates ecdysone receptor B1 to promote gene expression and apoptosis under 20-hydroxyecdysone regulation. Proceedings of the National Academy of Sciences of the United States of America, 114, E7121–E7130.
Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carre C, Noselli S, Leopold P. 2005. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science, 310, 667–670.
Cunningham J P, Zalucki M P. 2014. Understanding heliothine (Lepidoptera: Heliothinae) pests: What is a host plant? Journal of Economic Entomology, 107, 881–896.
Das D, Arur S. 2017. Conserved insulin signaling in the regulation of oocyte growth, development, and maturation. Molecular Reproduction and Development, 84, 444–459.
Denton D, Shravage B, Simin R, Mills K, Berry D L, Baehrecke E H, Kumar S. 2009. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Current Biology, 19, 1741–1746.
Dinan L. 2001. Phytoecdysteroids: Biological aspects. Phytochemistry, 57, 325–339.
Dong D J, Jing Y P, Liu W, Wang J X, Zhao X F. 2015. The steroid hormone 20-hydroxyecdysone up-regulates Ste-20 family serine/threonine kinase Hippo to induce programmed cell death. Journal of Biological Chemistry, 290, 24738–24746.
Dong D J, Liu P C, Wang J X, Zhao X F. 2012. The knockdown of Ha-GRIM-19 by RNA interference induced programmed cell death. Amino Acids, 42, 1297–1307.
Downes S, Kriticos D, Parry H, Paull C, Schellhorn N, Zalucki M P. 2017. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes. Pest Management Science, 73, 485–492.
Downes S, Mahon R. 2012. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM Crops & Food, 3, 228–234.
Dubrovsky E B. 2005. Hormonal cross talk in insect development. Trends in Endocrinology Metabolism, 16, 6–11.
Elmogy M, Iwami M, Sakurai S. 2004. Presence of membrane ecdysone receptor in the anterior silk gland of the silkworm Bombyx mori. European Journal of Biochemistry, 271, 3171–3179.
Garelli A, Gontijo A M, Miguela V, Caparros E Dominguez M. 2012. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science, 336, 579–582.
Gilbert L I. 2004. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster.  Molecular & Cellular Endocrinology, 215, 1–10.
Goncalves R M, Mastrangelo T, Rodrigues J C V, Paulo D F, Omoto C, Correa A S, de Azeredo-Espin A M L. 2019. Invasion origin, rapid population expansion, and the lack of genetic structure of cotton bollworm (Helicoverpa armigera) in the Americas. Ecology and Evolution, 9, 7378–7401.
Gontijo A M, Garelli A. 2018. The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control. Mechanisms of Development, 154, 44–50.
Gorelick-Feldman J, Cohick W Raskin I. 2010. Ecdysteroids elicit a rapid Ca2+ flux leading to Akt activation and increased protein synthesis in skeletal muscle cells. Steroids, 75, 632–637.
Guo S Y, Wu W M, Li S Y, Liu Y, Ruan Z F, Ye M Q, Xiao Y, Zhong Y J, Cao Y, Li K, Tian L. 2018. 20-hydroxyecdysone-upregulated proteases involved in Bombyx larval fat body destruction. Insect Molecular Biology, 27, 724–738.
Hauser A S, Attwood M M, Rask-Andersen M, Schioth H B, Gloriam D E. 2017. Trends in GPCR drug discovery: New agents, targets and indications. Nature Reviews Drug Discovery, 16, 829–842.
Hernandez-Sanchez C, Mansilla A, de Pablo F, Zardoya R. 2008. Evolution of the insulin receptor family and receptor isoform expression in vertebrates. Molecular Biology and Evolution, 25, 1043–1053.
Van Hiel M B, Vandersmissen H P, Proost P, Vanden Broeck J. 2015. Cloning, constitutive activity and expression profiling of two receptors related to relaxin receptors in Drosophila melanogaster. Peptides, 68, 83–90.
Hou L, Wang J X, Zhao X F. 2011. Rab32 and the remodeling of the imaginal midgut in Helicoverpa armigera. Amino Acids, 40, 953–961.
Iga M, Iwami M, Sakurai S. 2007. Nongenomic action of an insect steroid hormone in steroid-induced programmed cell death. Molecular & Cellular Endocrinology, 263, 18–28.
James C, Krattiger A. 1996. Global review of the field testing and commercialization of transgenic plants: 1986 to 1995: The first decade of crop biotechnology. ISAAA Briefs No 1. ISAAA, Ithaca, NY. p. 31.
Jia Q, Liu S, Wen D, Cheng Y, Bendena W G, Wang J, Li S. 2017. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. Journal of Biological Chemistry, 292, 21504–21516.
Jin L, Wang J, Guan F, Zhang J P, Yu S, Liu S Y, Xue Y Y, Li L L, Wu S W, Wang X L, Yang Y H, Abdelgaffar H, Jurat-Fuentes J L, Tabashnik B E, Wu Y D. 2018. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proceedings of the National Academy of Sciences of the United States of America, 115, 11760–11765.
Jing Y P, Liu W, Wang J X, Zhao X F. 2015. The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca2+/calmodulin-dependent protein kinase II to regulate gene expression. Journal of Biological Chemistry, 290, 8469–8481.
Jing Y P, Wang D, Han X L, Dong D J, Wang J X, Zhao X F. 2016. The steroid hormone 20-hydroxyecdysone enhances gene transcription through the cAMP response element-binding protein (CREB) signaling pathway. Journal of Biological Chemistry, 291, 12771–12785.
Joussen N, Agnolet S, Lorenz S, Schone S E, Ellinger R, Schneider B, Heckel D G. 2012. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences of the United States of America, 109, 15206–15211.
Kang X L, Zhang J Y, Wang D, Zhao Y M, Han X L, Wang J X, Zhao X F. 2019. The steroid hormone 20-hydroxyecdysone binds to dopamine receptor to repress lepidopteran insect feeding and promote pupation. PLoS Genetics, 15, e1008331.
Khan S A, Reichelt M, Heckel D G. 2017. Functional analysis of the ABCs of eye color in Helicoverpa armigera with CRISPR/Cas9-induced mutations. Scientific Reports, 7, 40025.
Kriticos D J, Ota N, Hutchison W D, Beddow J, Walsh T, Tay W T, Borchert D M, Paula-Moraes S V, Czepak C, Zalucki M P. 2015. The potential distribution of invading Helicoverpa armigera in north America: Is it just a matter of time? PLoS ONE, 10, e0119618.
Li K, Jia Q Q, Li S. 2019. Juvenile hormone signaling - a mini review. Insect Science, 26, 600–606.
Li M, Mead E A, Zhu J. 2011. Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proceedings of the National Academy of Sciences of the United States of America, 108, 638–643.
Li S, Yu X Q, Feng Q L. 2019. Fat body biology in the last decade. Annual Review of Entomology, 64, 315–333.
Li Y B, Li X R, Yang T, Wang J X, Zhao X F. 2016. The steroid hormone 20-hydroxyecdysone promotes switching from autophagy to apoptosis by increasing intracellular calcium levels. Insect Biochemistry and Molecular Biology, 79, 73–86.
Li Y B, Pei X Y, Wang D, Chen C H, Cai M J, Wang J X, Zhao X F. 2017. The steroid hormone 20-hydroxyecdysone upregulates calcium release-activated calcium channel modulator 1 expression to induce apoptosis in the midgut of Helicoverpa armigera. Cell Calcium, 68, 24–33.
Li Y B, Yang T, Wang J X, Zhao X F. 2018. The steroid hormone 20-hydroxyecdysone regulates the conjugation of autophagy-related proteins 12 and 5 in a concentration and time-dependent manner to promote insect midgut programmed cell death. Frontiers in Endocrinology, 9, 28.
Lim Z X, Robinson K E, Jain R G, Chandra G S, Asokan R, Asgari S, Mitter N. 2016. Diet-delivered RNAi in Helicoverpa armigera - Progresses and challenges. Journal of Insect Physiology, 85, 86–93.
Lin H H, Stacey M. 2016. G protein-coupled receptors in macrophages. Microbiology Spectrum, 4, 1–20.
Lin X, Smagghe G. 2019. Roles of the insulin signaling pathway in insect development and organ growth. Peptides, 122, 169923.
Lin Z, Wang R J, Cheng Y, Du J, Volovych O, Han L B, Li J C, Hu Y, Lu Z Y, Lu Z Q, Zou Z. 2019. Insights into the venom protein components of microplitis mediator, an endoparasitoid wasp. Insect Biochemistry and Molecular Biology, 105, 33–42.
Liu C Y, Liu W, Zhao W L, Wang J X, Zhao X F. 2013. Upregulation of the expression of prodeath serine/threonine protein kinase for programmed cell death by steroid hormone 20-hydroxyecdysone. Apoptosis, 18, 171–187.
Liu C Y, Zhao W L, Wang J X, Zhao X F. 2015. Cyclin-dependent kinase regulatory subunit 1 promotes cell proliferation by insulin regulation. Cell Cycle, 14, 3045–3057.
Liu H H, Jia Q Q, Tettamanti G, Li S. 2013. Balancing crosstalk between 20-hydroxyecdysone-induced autophagy and caspase activity in the fat body during Drosophila larval-prepupal transition. Insect Biochemistry and Molecular Biology, 43, 1068–1078.
Liu P, Peng H J, Zhu J. 2015. Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proceedings of the National Academy of Sciences of the United States of America, 112, E1871–E1879.
Liu P C, Wang J X, Song Q S, Zhao X F. 2011. The participation of calponin in the cross talk between 20-hydroxyecdysone and juvenile hormone signaling pathways by phosphorylation variation. PLoS ONE, 6, 19776.
Liu S N, Li K, Gao Y, Liu X, Chen W T, Ge W, Feng Q L, Palli S R, Li S. 2018. Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 115, 139–144.
Liu W, Cai M J, Wang J X, Zhao X F. 2014a. In a nongenomic action, steroid hormone 20-hydroxyecdysone induces phosphorylation of cyclin-dependent kinase 10 to promote gene transcription. Endocrinology, 155, 1738–1750.
Liu W, Cai M J, Zheng C C, Wang J X, Zhao X F. 2014b. Phospholipase Cγ1 connects the cell membrane pathway to the nuclear receptor pathway in insect steroid hormone signaling. Journal of Biological Chemistry, 289, 13026–13041.
Liu Z M, Wang X F, Dai Y, Wei X L, Ni M, Zhang L, Zhu Z. 2019. Expressing double-stranded RNAs of insect hormone-related genes enhances baculovirus insecticidal activity. International Journal of Molecular Sciences, 20, 419.
Losel R, Wehling M. 2003. Nongenomic actions of steroid hormones. Nature Reviews Molecular Cell Biology, 4, 46–56.
Mamta, Reddy K R, Rajam M V. 2016. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Molecular Biology, 90, 281–292.
Manaboon M, Iga M, Iwami M, Sakurai S. 2009. Intracellular mobilization of Ca2+ by the insect steroid hormone 20-hydroxyecdysone during programmed cell death in silkworm anterior silk glands. Journal of Insect Physiology, 55, 122–128.
Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.
Mirth C, Truman J W, Riddiford L M. 2005. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current Biology, 15, 1796–1807.
Mizoguchi A, Okamoto N. 2013. Insulin-like and IGF-like peptides in the silkmoth Bombyx mori: discovery, structure, secretion, and function. Frontiers in Physiology, 4, 217.
Nassel D R, Vanden Broeck J. 2016. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences, 73, 271–290.
Ni M, Ma W, Wang X F, Gao M J, Dai Y, Wei X L, Zhang L, Peng Y G, Chen S Y, Ding L Y, Tian Y, Li J, Wang H P, Wang X L, Xu G W, Guo W Z, Yang Y H, Wu Y D, Heuberger S, Tabashnik B E, et al. 2017. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnology Journal, 15, 1204–1213.
Nijhout H F, Grunert L W. 2002. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 99, 15446–15450.
Nijhout H F, Smith W A, Schachar I, Subramanian S, Tobler A, Grunert L W. 2007. The control of growth and differentiation of the wing imaginal disks of Manduca sexta. Developmental Biology, 302, 569–576.
Pan J, Di Y Q, Li Y B, Chen C H, Wang J X, Zhao X F. 2018. Insulin and 20-hydroxyecdysone oppose each other in the regulation of phosphoinositide-dependent kinase-1 expression during insect pupation. Journal of Biological Chemistry, 293, 18613–18623.
Pearce S L, Clarke D F, East P D, Elfekih S, Gordon K H J, Jermiin L S, McGaughran A, Oakeshott J G, Papanikolaou A, Perera O P, Rane R V, Richards S, Tay W T, Walsh T K, Anderson A, Anderson C J, Asgari S, Board P G, Bretschneider A, Campbell P M, et al. 2017. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 15, 69.
Rahimpour H, Moharramipour S, Asgari S, Mehrabadi M. 2019. The microRNA pathway core genes are differentially expressed during the development of Helicoverpa armigera and contribute in the insect’s development. Insect Biochemistry and Molecular Biology, 110, 121–127.
Ren J, Li X R, Liu P C, Cai M J, Liu W, Wang J X, Zhao X F. 2014. G-protein alphaq participates in the steroid hormone 20-hydroxyecdysone nongenomic signal transduction. Journal of Steroid Biochemistry and Molecular Biology, 144, 313–323.
Riddiford L M. 1996. Juvenile hormone: The status of its “status quo” action. Archives of Insect Biochemistry and Physiology, 32, 271–286.
Riddiford L M, Hiruma K, Zhou X, Nelson C A. 2003. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33, 1327–1338.
Roma G C, Bueno O C, Camargo-Mathias M I. 2010. Morpho-physiological analysis of the insect fat body: A review. Micron, 41, 395–401.
Roseland C R, Schneiderman H A. 1979. Regulation and metamorphosis of the abdominal histoblasts of Drosophila melanogaster. Wilhelm Roux’s Archives of Developmental Biology, 186, 235–265.
Sang M, Li C J, Wu W, Li B. 2016. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction. Gene, 585, 196–204.
Shao H L, Zheng W W, Liu P C, Wang Q, Wang J X, Zhao X F. 2008. Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS ONE, 3, 3127.
Shin S W, Zou Z, Saha T T, Raikhel A S. 2012. bHLH-PAS heterodimer of methoprene-tolerant and cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proceedings of the National Academy of Sciences of the United States of America, 109, 16576–16581.
Siehler S. 2008. Cell-based assays in GPCR drug discovery. Biotechnology Journal, 3, 471–483.
Sonksen P, Sonksen J. 2000. Insulin: understanding its action in health and disease. British Journal of Anaesthesia, 85, 69–79.
Sriram K, Insel P A. 2018. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Molecular Pharmacology, 93, 251–258.
Srivastava D P, Yu E J, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans P D. 2005. Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. Journal of Neuroscience, 25, 6145–6155.
Stork N E. 2018. How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63, 31–45.
Sui Y P, Liu X B, Chai L Q, Wang J X, Zhao X F. 2009. Characterization and influences of classical insect hormones on the expression profiles of a molting carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). Insect Molecular Biology, 18, 353–363.
Tabashnik B E, Wu K M, Wu Y D. 2012. Early detection of field-evolved resistance to Bt cotton in China: Cotton bollworm and pink bollworm. Journal of Invertebrate Pathology, 110, 301–306.
Takasaki M, Tokuda H, Nishino H, Konoshima T. 1999. Cancer chemopreventive agents (antitumor-promoters) from Ajuga decumbens. International Journal of Production Research, 62, 972–975.
Tang Q B, Song W W, Chang Y J, Xie G Y, Chen W B, Zhao X C. 2019. Distribution of serotonin-immunoreactive neurons in the brain and gnathal ganglion of caterpillar Helicoverpa armigera. Frontiers in Neuroanatomy, 13, 56.
Tay W T, Soria M F, Walsh T, Thomazoni D, Silvie P, Behere G T, Anderson C, Downes S. 2013. A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE, 8, e80134.
Thummel C S. 2002. Ecdysone-regulated puff genes 2000. Insect Biochemistry and Molecular Biology, 32, 113–120.
Thummel C S, Chory J. 2002. Steroid signaling in plants and insects-common themes, different pathways. Genes & Development, 16, 3113–3129.
Tian L, Ma L, Guo E E, Deng X J, Ma S Y, Xia Q Y, Cao Y, Li S. 2013. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body. Autophagy, 9, 1172–1187.
Tian Y Y, Liu Y, Zhao X F, Wang J X. 2009. Characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. Developmental and Comparative Immunology, 33, 772–779.
Tufail M, Takeda M. 2008. Molecular characteristics of insect vitellogenins. Journal of Insect Physiology, 54, 1447–1458.
Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J. 1998. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Letters, 438, 150–158.
Walsh T K, Joussen N, Tian K, McGaughran A, Anderson C J, Qiu X H, Ahn S J, Bird L, Pavlidi N, Vontas J, Ryu J, Rasool A, Macedo I B, Tay W T, Zhang Y J, Whitehouse M E A, Silvie P J, Downes S, Nemec L, Heckel D G. 2018. Multiple recombination events between two cytochrome P450 loci contribute to global pyrethroid resistance in Helicoverpa armigera. PLoS ONE, 13, 0197760.
Wang C X, Zheng W W, Liu P C, Wang J X, Zhao X F. 2012. The steroid hormone 20-hydroxyecdysone upregulated the protein phosphatase 6 for the programmed cell death in the insect midgut. Amino Acids, 43, 963–971.
Wang D, Pei X Y, Zhao W L, Zhao X F. 2016. Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium, 60, 1–12.
Wang D, Zhao W L, Cai M J, Wang J X, Zhao X F. 2015. G-protein-coupled receptor controls steroid hormone signaling in cell membrane. Scientific Reports, 5, 8675.
Wang G J, Zhuo X R, Wang W W, Liu X S, Wang G X, Wang J L. 2019. Molecular characterization of immune responses of Helicoverpa armigera to infection with the mermithid nematode Ovomermis sinensis. BMC Genomics, 20, 161.
Wang J, Zuo Y Y, Li L L, Wang H, Liu S Y, Yang Y H, Wu Y D. 2019. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Insect Science, doi: 10.1111/1744-7917.12666
Wang J L, Jiang X J, Wang Q, Hou L J, Xu D W, Wang J X, Zhao X F. 2007. Identification and expression profile of a putative basement membrane protein gene in the midgut of Helicoverpa armigera. BMC Developmental Biology, 7, 76.
Wang L F, Chai L Q, He H J, Wang Q, Wang J X, Zhao X F. 2010. A cathepsin L-like proteinase is involved in moulting and metamorphosis in Helicoverpa armigera. Insect Molecular Biology, 19, 99–111.
Wang Q, Liu Y, He H J, Zhao X F, Wang J X. 2010. Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunology, 11, 9.
Wei J Z, Yang S, Chen L, Liu X G, Du M F, An S H, Liang G M. 2018. Transcriptomic responses to different Cry1Ac selection stresses in Helicoverpa armigera. Frontiers in Physiology, 9, 1653.
Wex T, Lendeckel U, Kahne T, Ittenson A, Frank K, Ansorge S. 1997. The main neutral aminopeptidase activity of human lymphoid tumour cell lines does not originate from the aminopeptidase N-(APN; CD13) gene. Biochimica Et Biophysica Acta-Molecular Cell Research, 1355, 147–154.
Wilkinson T N, Bathgate R A D. 2007. The evolution of the relaxin peptide family and their receptors. Relaxin and Related Peptides, 612, 1–13.
Williams C M. 1961. The juvenile hormone II. Its role in the endocrine control of molting, pupation, and adult development in the Cecropia silkworm. Trends in Endocrinology Metabolism, 16, 6–11.
Wilson T G, Fabian J. 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Developmental Biology, 118, 190–201.
Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 321, 1676–1678.
Xiong G H, Xing L S, Lin Z, Saha T T, Wang C S, Jiang H B, Zou Z. 2015. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genomics, 16, 321.
Xu H J, Xue J, Lu B, Zhang X C, Zhuo J C, He S F, Ma X F, Jiang Y Q, Fan H W, Xu J Y, Ye Y X, Pan P L, Li Q, Bao Y Y, Nijhout H F, Zhang C X. 2015. Two insulin receptors determine alternative wing morphs in planthoppers. Nature, 519, 464–467.
Yang C, Lin X W, Xu W H. 2017. Cathepsin L participates in the remodeling of the midgut through dissociation of midgut cells and activation of apoptosis via caspase-1. Insect Biochemistry and Molecular Biology, 82, 21–30.
Yang D, Chai L, Wang J, Zhao X. 2008. Molecular cloning and characterization of Hearm caspase-1 from Helicoverpa armigera. Molecular Biology Reports, 35, 405–412.
Yang K, Huang L Q, Ning C, Wang C Z. 2017. Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. Elife, 6, 29100.
Yang X M, Hou L J, Wang J X, Zhao X F. 2007. Expression and function of cathepsin B-like proteinase in larval hemocytes of Helicoverpa armigera during metamorphosis. Archives of Insect Biochemistry and Physiology, 64, 164–174.
Yuan C F, Xing L S, Wang M L, Wang X, Yin M Y, Wang Q R, Hu Z H, Zou Z. 2017. Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLoS Pathogens, 13, 1006645.
Zhai X, Zhao X F. 2012. Participation of haemocytes in fat body degradation via cathepsin L expression. Insect Molecular Biology, 21, 521–534.
Zhang D D, Xiao Y T, Chen W B, Lu Y H, Wu K M. 2019. Field monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) Cry1Ac insecticidal protein resistance in China (2005–2017). Pest Management Science, 75, 753–759.
Zhang Q, Lu Y X, Xu W H. 2013. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics, 14, 751.
Zhang Q, Nachman R J, Denlinger D L. 2015. Diapause hormone in the Helicoverpa/Heliothis complex: A review of gene expression, peptide structure and activity, analog and antagonist development, and the receptor. Peptides, 72, 196–201.
Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros V I D, Zhang Q, Liu X. 2018. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Molecular Ecology, 27, 459–475.
Zhang X Q, Chen M, Ma X L, Zhao X F, Wang J X, Shao H L, Song Q S, Stanley D. 2013. Suppression of acmnpv replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t. Archives of Insect Biochemistry and Physiology, 82, 158–171.
Zhao W, Li L, Zhang Y, Liu X, Wei J, Xie Y, Du M, An S. 2018. Calcineurin is required for male sex pheromone biosynthesis and female acceptance. Insect Molecular Biology, 27, 373–382.
Zhao X F, Wang J X, Wang Y C. 1998. Purification and characterization of a cysteine proteinase from eggs of the cotton boll worm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 28, 259–264.
Zhou X, Riddiford L M. 2002. Broad specifies pupal development and mediates the ‘status quo’ action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development, 129, 2259–2269.
Zhu J, Chen L, Raikhel A S. 2003. Posttranscriptional control of the competence factor βFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 100, 13338–13343.
[1] GAO Yue, LUO Jian, SUN Yue, ZHANG Hua-wei, ZHANG Da-xia, LIU Feng, MU Wei, LI Bei-xing. Photosensitivity and a precise combination of size-dependent lambda-cyhalothrin microcapsules synergistically generate better insecticidal efficacy [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1477-1488.
[2] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[3] LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2345-2356.
[4] ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao. Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1703-1712.
[5] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
[6] LI Yong-ping, LIU Tian-jia, LUO Hui-feng, LIU Sheng-cai . The transcriptional landscape of cultivated strawberry (Fragaria×ananassa) and its diploid ancestor (Fragaria vesca) during fruit development[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1540-1553.
[7] HE Li-mei, WANG Teng-li, CHEN Yu-chao, GE Shi-shuai, Kris A. G. WYCKHUYS, WU Kong-ming. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 736-744.
[8] SU Hong-hua, JIANG Tao, SUN Yu, GU Hui-jie, WU Jiao-jiao, YANG Yi-zhong. Effect of three insect-resistant maizes expressing Cry1Ie, Cry1Ab/Cry2Aj and Cry1Ab on the growth and development of armyworm Mythimna separata (Walker)[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1842-1849.
[9] Silvia I. RONDON. Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change[J]. >Journal of Integrative Agriculture, 2020, 19(2): 316-324.
[10] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[11] HUANG Bin, SHI Zhang-hong, HOU You-ming. Tradeoff between triglyceride consumption and ovariole development in Plutella xylostella (L.) released in mixed-host environments[J]. >Journal of Integrative Agriculture, 2019, 18(4): 865-872.
[12] XIONG Wen-feng, XIE Jia, WEI Lu-ting, ZHANG Si-si, SONG Xiao-wen, GAO Shan-shan, LI Bin. Transcriptome analysis of hsp18.3 functions and regulatory systems using RNA-sequencing in the red flour beetle, Tribolium castaneum[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1040-1056.
[13] WANG Jiang-xu, SUN Jian, LI Cheng-xin, LIU Hua-long, WANG Jing-guo, ZHAO Hong-wei, ZOU De-tang. Genetic dissection of the developmental behavior of plant height in rice under different water supply conditions[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2688-2702.
[14] DOU Ling-ling, GUO Ya-ning, Ondati Evans, PANG Chao-you, WEI Heng-ling, SONG Mei-zhen, FAN Shu-li, YU Shu-xun. Identification and expression analysis of group III WRKY transcription factors in cotton[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2469-2480.
No Suggested Reading articles found!