Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (06): 1207-1217    DOI: 10.1016/S2095-3119(15)61153-4
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
De novo assembly of Zea nicaraguensis root transcriptome identified 5 261 full-length transcripts
JIANG Wei1, 2, LIU Hai-lan1, WU Yuan-qi1, ZHANG Su-zhi1, LIU Jian1, LU Yan-li1, TANG Qi-lin1, RONG Ting-zhao1
1 Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China
2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract     Zea nicaraguensis, a wild relative of cultivated maize (Zea mays subsp. mays), is considered to be a valuable germplasm to improve the waterlogging tolerance of cultivated maize. Use of reverse genetic-based gene cloning and function verification to discover waterlogging tolerance genes in Z. nicaraguensis is currently impractical, because little gene sequence information for Z. nicaraguensis is available in public databases. In this study, Z. nicaraguensis seedlings were subjected to simulated waterlogging stress and total RNAs were isolated from roots stressed and non-stressed controls. In total, 80 mol L–1 Illumina 100-bp paired-end reads were generated. De novo assembly of the reads generated 81 002 final non-redundant contigs, from which 5 261 full-length transcripts were identified. Among these full-length transcripts, 3 169 had at least one Gene Ontology (GO) annotation, 2 354 received cluster of orthologous groups (COG) terms, and 1 992 were assigned a Kyoto encyclopedia of genes and genomes (KEGG) Orthology number. These sequence data represent a valuable resource for identification of Z. nicaraguensis genes involved in waterlogging response.
Keywords:  Zea nicaraguensis        teosinte        RNA-Seq        full-length transcript  
Received: 07 April 2015   Accepted:
Fund: 

This work was supported by the Basic Research Program of China (973 Program, 2014CB138705), the National Natural Science Foundation of China (31371639) and the Sichuan Youth Science and Technology Foundation of China (12ZB091).

Corresponding Authors:  TANG Qi-lin, Tel: +86-28-86290916, Fax: +86-28-86290912, E-mail: tangqilin71@163.com    

Cite this article: 

JIANG Wei, LIU Hai-lan, WU Yuan-qi, ZHANG Su-zhi, LIU Jian, LU Yan-li, TANG Qi-lin, RONG Ting-zhao. 2016. De novo assembly of Zea nicaraguensis root transcriptome identified 5 261 full-length transcripts. Journal of Integrative Agriculture, 15(06): 1207-1217.

Abiko T, Kotula L, Shiono K, Malik A I, Colmer T D, Nakazono M. 2012. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell and Environment, 35, 1618–1630.

Atwell B J, Drew M C, Jackson M B. 1988. The influence of oxygen deficiency on ethylene synthesis, l-aminocyclopropane-1- carboxylic acid levels and aerenchyma formation in roots of Zea mays L. Physiologia Plantarum, 72, 15–22.

Bailey-Serres J, Lee S C, Brinton E. 2012. Waterproofing crops: Effective flooding survival strategies. Plant Physiology, 160, 1698–1709.

Bird R M. 2000. A remarkable new teosinte from Nicaragua: Growth and treatment of progeny. Maize Genetics Cooperation Newsletter, 74, 58–59.

Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp S J, Ozias-Akins P, Varshney R K, Liang X. 2013. Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnology Journal, 11, 115–127.

Chu H T, Hsiao W W, Chen J C, Yeh T J, Tsai M H, Lin H, Liu Y W, Lee S A, Chen C C, Tsao T T, Kao C Y. 2013. EBARDenovo: Highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics, 29, 1004–1010.

Conesa A, Götz S. 2008. Blast2GO: A comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 2008, 619832.

Conesa A, Götz S, García-Gómez J M, Terol J, Talón M, Robles M. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.

Drew M C, He C J, Morgan P W. 2000. Programmed cell death and aerenchyma formation in roots.Trends in Plant Science, 5, 123–127.

Drew M C, Jackson M B, Giffard S C, Campbell R. 1981. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene or to oxygen deficiency. Planta, 153, 217–224.

Evans D E. 2003. Aerenchyma formation. New Phytologist, 161, 35–49.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.

Hattori Y, Nagai K, Furukawa S, Song X J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 460, 1026–1030.

He C J, Drew M C, Morgan P W. 1994. Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiology, 105, 861–865.

He C J, Morgan P W, Drew M C. 1996. Transduction of an ethylene signal is required for cell death and lysis in the root cortex of maize during aerenchyma formation induced by hypoxia. Plant Physiology, 112, 463–472.

Huang X, Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Research, 9, 868–877.

Iltis H H, Benz B F. 2000. Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon, 10, 382–390.

Jackson M B, Ishizawa K, Ito O. 2009. Evolution and mechanisms of plant tolerance to flooding stress. Annals of Botany, 103, 137–142.

Konings H. 1982. Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions. Physiologia Plantar, 54, 119–124.

Lai J, Dey N, Kim C S, Bharti A K, Rudd S, Mayer K F, Larkins B A, Becraft P, Messing J. 2004. Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Research, 14, 1932–1937.

Lee Y H, Kim K S, Jang Y S, Hwang J H, Lee D H, Choi I H. 2014. Global gene expression responses to waterlogging in leaves of rape seedlings. Plant Cell Reports, 33, 289–299.

Liu F, Vantoai T, Moy L P, Bock G, Linford L D, Quackenbush J. 2005. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiology, 137, 1115–1129.

Liu S, Zhang Y, Zhou Z, Waldbieser G, Sun F, Lu J, Zhang J, Jiang Y, Zhang H, Wang X, Rajendran K V, Khoo L, Kucuktas H, Peatman E, Liu Z. 2012. Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. BMC Genomics, 13, 595.

Mano Y, Omori F. 2007. Breeding for flooding tolerant maize using ‘teosinte’ as a germplasm resource. Plant Root, 1, 17–21.

Mano Y, Omori F. 2008. Verification of QTL controlling root aerenchyma formation in a maize×teosinte “Zea nicaraguensis” advanced backcross population. Breeding Science, 58, 217–223.

Mano Y, Omori F. 2009. High-density linkage map around the root aerenchyma locus Qaer1.06 in the backcross populations of maize Mi29×teosinte ‘Zea nicaraguensis’. Breeding Science, 59, 427–433.

Mano Y, Omori F, Loaisiga C H, Bird R M. 2009. QTL mapping of above-ground adventitious roots during flooding inmaize×teosinte ‘Zea nicaraguensis’ backcross population. Plant Root, 3, 3–9.

Mano Y, Omori F, Takeda K. 2012. Construction of intraspecific linkage maps, detection of a chromosome inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte Zea nicaraguensis. Molecular Breeding, 29, 137–146.

Mano Y, Omori F, Takamizo T, Kindiger B, Bird R M, Loaisiga CH, Takahashi H. 2007. QTL mapping of root aerenchyma formation in seedlings of a maize×rare teosinte ‘Zea nicaraguensis’ cross. Plant and Soil, 295, 103–113.

Mardis E R. 2008. The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24, 133–141.

Özçubukçu S, Ergün N, Ilhan E. 2014. Waterlogging and nitric oxide induce gene expression and increase antioxidant enzyme activity in wheat (Triticum aestivum L.). Acta Biologica Hungarica, 65, 47–60.

Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa N K, Nakazono M. 2011. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytologist, 190, 351–368.

Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M. 2009. The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1125.

De Simone O, Haase K, Müller E, Junk W J, Hartmann K, Schreiber L, Schmidt W. 2003. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four amazonian tree species. Plant Physiology, 132, 206–217.

Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, Currie J, Angelova A, Collura K, Wissotski M, Ashley E, Morrow D, Fernandes J, Walbot V, Yu Y. 2009. Sequencing, mapping, and analysis of 27455 maize full-length cDNAs. PLoS Genetics, 5, e1000740.

Varshney R K, Nayak S N, May G D, Jackson S A. 2009. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 27, 522–530.

Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J. 2006. WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 34, W293–W297.

Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442, 705–708.

Zou X, Jiang Y, Liu L, Zhang Z, Zheng Y. 2010. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biology, 10, 189.
[1] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[2] DONG Shi-man, XIAO Liang, LI Zhi-bo, SHEN Jie, YAN Hua-bing, LI Shu-xia, LIAO Wen-bin, PENG Ming. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2588-2602.
[3] WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping. Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2372-2383.
[4] PAN Wen-jing, HAN Xue, HUANG Shi-yu, YU Jing-yao, ZHAO Ying, QU Ke-xin, ZHANG Ze-xin, YIN Zhen-gong, QI Hui-dong, YU Guo-long, ZHANG Yong, XIN Da-wei, ZHU Rong-sheng, LIU Chun-yan, WU Xiao-xia, JIANG Hong-wei, HU Zhen-bang, ZUO Yu-hu, CHEN Qing-shan, QI Zhao-ming. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1886-1902.
[5] DU Qing-guo, YANG Juan, Shah SYED MUHAMMAD SADIQ, YANG Rong-xin, YU Jing-juan, LI Wen-xue. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2043-2055.
[6] WU Fan-lin, QU De-hui, TIAN Wei, WANG Meng-yun, CHEN Fei-yan, LI Ke-ke, SUN Ya-dong, SU Ying-hua, YANG Li-na, SU Hong-yan, WANG Lei. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1819-1831.
[7] LI Yong-ping, LIU Tian-jia, LUO Hui-feng, LIU Sheng-cai . The transcriptional landscape of cultivated strawberry (Fragaria×ananassa) and its diploid ancestor (Fragaria vesca) during fruit development[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1540-1553.
[8] CHEN Li-li, WANG Hao-ying, GONG Xiao-chen, ZENG Zhao-hai, XUE Xu-zhang, HU Yue-gao. Transcriptome analysis reveals effects of red and blue lightemitting diodes (LEDs) on the growth, chlorophyll fluorescence and endogenous plant hormones of potato (Solanum tuberosum L.) plantlets cultured in vitro[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2914-2931.
[9] LIU Kai, CHEN Zhan, SU Qin, YUE Lei, CHEN Wei-wen, ZHANG Wen-qing. Comparative analysis of the ecological fitness and transcriptome between two genotypes of the brown planthopper Nilaparvata lugens[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1501-1511.
[10] MA Ni, WAN Lin, ZHAO Wei, LIU Hong-fang, LI Jun, ZHANG Chun-lei.
Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 465-482.
[11] HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1541-1546.
[12] GENG Da-li, LU Li-yuan, YAN Ming-jia, SHEN Xiao-xia, JIANG Li-juan, LI Hai-yan, WANG Li-ping, YAN Yan, XU Ji-di, LI Cui-ying, YU Jian-tao, MA Feng-wang, GUAN Qing-mei. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1280-1294.
[13] CHEN Meng-yao, YE Wan-yi, XIAO Hua-mei, LI Mei-zhen, CAO Zheng-hong, YE Xin-hai, ZHAO Xian-xin, HE Kang, LI Fei. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2814-2822.
[14] ZHOU Yu-qian, WANG Qin-yang, ZHAO Hai-liang, GONG Dian-ming, SUN Chuan-long, REN Xue-mei, LIU Zhong-xiang, HE Hai-jun, QIU Fa-zhan. Unravelling transcriptome changes between two distinct maize inbred lines using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1574-1584.
[15] SU Ai-guo*, SONG Wei*, SHI Zi, ZHAO Yan-xin, XING Jin-feng, ZHANG Ru-yang, LI Chun-hui, LUO Mei-jie, WANG Ji-dong, ZHAO Jiu-ran. Exploring differentially expressed genes associated with fertility instability of S-type cytoplasmic male-sterility in maize by RNA-seq[J]. >Journal of Integrative Agriculture, 2017, 16(08): 1689-1699.
No Suggested Reading articles found!