Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (2): 347-354    DOI: 10.1016/S2095-3119(14)60770-X
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3A in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner)
 ZHANG Qian, CHEN Li-zhen, LU Qiong, ZHANG Yan, LIANG Ge-mei
1、State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences, 100193 Beijing, P.R.China
2、Institute of Cotton Research, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P.R.China
3、College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The Bacillus thuringiensis vegetative insecticidal protein, Vip3A, represents a new family of Bt toxin and is currently applied to commercial transgenic cotton. To determine whether the Cry1Ac-resistant Helicoverpa armigera is cross-resistant to Vip3Aa protein, insecticidal activities, proteolytic activations and binding properties of Vip3Aa toxin were investigated using Cry1Ac-susceptible (96S) and Cry1Ac-resistant H. armigera strain (Cry1Ac-R). The toxicity of Vip3Aa in Cry1Ac-R slightly reduced compared with 96S, the resistance ratio was only 1.7-fold. The digestion rate of full-length Vip3Aa by gut juice extracts from 96S was little faster than that from Cry1Ac-R. Surface plasmon resonance (SPR) showed there was no significant difference between the binding affinity of Vip3Aa and BBMVs between 96S and Cry1Ac-R strains, and there was no significant competitive binding between Vip3Aa and Cry1Ac in susceptible or resistant strains. So there had little cross-resistance between Vip3Aa and Cry1Ac,Vip3A+Cry proteins maybe the suitable pyramid strategy to control H. armigera in China in the future.

Abstract  The Bacillus thuringiensis vegetative insecticidal protein, Vip3A, represents a new family of Bt toxin and is currently applied to commercial transgenic cotton. To determine whether the Cry1Ac-resistant Helicoverpa armigera is cross-resistant to Vip3Aa protein, insecticidal activities, proteolytic activations and binding properties of Vip3Aa toxin were investigated using Cry1Ac-susceptible (96S) and Cry1Ac-resistant H. armigera strain (Cry1Ac-R). The toxicity of Vip3Aa in Cry1Ac-R slightly reduced compared with 96S, the resistance ratio was only 1.7-fold. The digestion rate of full-length Vip3Aa by gut juice extracts from 96S was little faster than that from Cry1Ac-R. Surface plasmon resonance (SPR) showed there was no significant difference between the binding affinity of Vip3Aa and BBMVs between 96S and Cry1Ac-R strains, and there was no significant competitive binding between Vip3Aa and Cry1Ac in susceptible or resistant strains. So there had little cross-resistance between Vip3Aa and Cry1Ac,Vip3A+Cry proteins maybe the suitable pyramid strategy to control H. armigera in China in the future.
Keywords:  vegetative insecticidal proteins (Vip3Aa)       Bacillus thuringiensis       Helicoverpa armigera       cross-resistance       binding affinity  
Received: 04 December 2013   Accepted:
Fund: 

This research was supported by the Key Project for Breeding Genetically Modified Organisms, China (2014ZX08011-002) and the National Natural Science Foundation of China (30971921, 31321004).

Corresponding Authors:  LIANG Ge-mei, Tel: +86-10-62815929,E-mail: gmliang@ippcaas.cn     E-mail:  gmliang@ippcaas.cn
About author:  * These authors contributed equally to this study.

Cite this article: 

ZHANG Qian, CHEN Li-zhen, LU Qiong, ZHANG Yan, LIANG Ge-mei. 2015. Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3A in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner). Journal of Integrative Agriculture, 14(2): 347-354.

Akhurst R J, James W, Bird L J, Beard C. 2003. Resistanceto the Cry1Ac delta-endotoxin of Bacillus thuringiensis inthe cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae). Journal of Economic Entomology, 96, 1290-1299

An J J, Gao Y L, Wu K M, Gould F, Gao J H, Shen Z C, Lei C L2010. Vip3Aa tolerance response of Helicoverpa armigera  populations from a Cry1Ac cotton planting region. Journalof Economic Entomology, 103, 2169-2173

Anilkumar K J, Rodrigo-Simon A, Ferré J, Pusztai-Carey M,Sivasupramaniam S, Moar W J. 2008. Production andcharacterization of Bacillus thuringiensis Cry1Ac-resistantcotton bollworm Helicoverpa zea (Boddie). Applied andEnvironmental Microbiology, 74, 462-469

Bird L J, Akhurst R J. 2004. Relative fitness of Cry1A-resistantand -susceptible Helicoverpa armigera (Lepidoptera:Noctuidae) on conventional and transgenic cotton. Journalof Economic Entomology, 97, 1699-1709

Brévault T, Heuberger S, Zhang M, Ellers-Kirk C, Ni X, MassonL, Li X, Tabashnik B E, Carrière Y. 2013. Potential shortfallof pyramided transgenic cotton for insect resistancemanagement. Proceedings of the National Academy ofSciences of the United States of America, 110, 5806-5811

Bradford M M. 1976. A rapid and sensitive method for thequantization of microgram quantities of protein unitizing theprinciple the protein dye binding. Analytical Biochemistry,72, 248-254

Chaufaux J, Müller-Cohn J, Buisson C, Sanchis V, LereclusD, Pasteur N. 1997. Inheritance of resistance to theBacillus thuringiensis Cry1C toxin in Spodoptera littoralis(Lepidoptera: Noctuidae). Journal of Economic Entomology,90, 873-878

Chen L Z, Liang G M, Rector B G, Zhang J, Wu K M, Guo Y Y.2008. Effects of different brush border membrane vesicleisolation protocols on proteomic analysis of Cry1Ac bindingproteins from the midgut of Helicoverpa armigera. InsectScience, 15, 497-503

Dhurua S, Gujar G T. 2011. Field-evolved resistance to Bt toxinCry1Ac in the pink bollworm, Pectinophora gossypiella(Saunders) (Lepidoptera: Gelechiidae), from India. PestManagement Science, 67, 898-903

Downes S, Mahon R, Olsen K. 2007. Monitoring and adaptiveresistance management in Australia for Bt-cotton: Currentstatus and future challenges. Journal of InvertebratePathology, 95, 208-213

Downes S, Mahon R. 2012. Evolution, ecology and managementof resistance in Helicoverpa spp. to Bt cotton in Australia.Journal of Invertebrate Pathology, 110, 281-286

Downes S, Parker T, Mahon R. 2010. Characteristics ofresistance to Bacillus thuringiensis toxin Cry2Ab in a strainof Helicoverpa punctigera (Wallengren) (Lepidoptera:Noctuidae) isolated from a field population. Journal ofEconomic Entomology, 103, 2147-2154

El-Sayed M M H, Chase H A. 2010. Purification of the two majorproteins from whey concentrate using a cation-exchangeselective adsorption process. Biotechnology Progress, 26,192-199

Estruch J J, Warren G W, Mullins M A. 1996. Vip3A, a novelBacillus thuringiensis vegetative insecticidal protein with awide spectrum of activities against Lepidopteran insects.Proceedings of the National Academy of Sciences of theUnited States of America, 93, 5389-5394

Gassmann A J, Petzold-Maxwell J L, Keweshan R S, Dunbar MW. 2011. Field-evolved resistance to Bt maize by westerncorn rootworm. PLoS ONE, 6, e22629.

Gould F, Anderson A, Reynolds A, Bumgarner L, Moar W. 1995.Selection and genetic analysis of a Heliothis virescens(Lepidoptera: Noctuidae) strain with high levels of resistanceto Bacillus thuringiensis toxins. Journal of EconomicEntomology, 88, 1545-1559

Greenplate J T, Mullins J W, Penn S R, Dahm A, Reich B J,Osborn J A, Rahn P R, Ruschke L, Shappley Z W. 2003.Partial characterization of cotton plants expressing twotoxin proteins from Bacillus thuringiensis relative toxincontribution, toxin interaction, and resistance management.Journal of Applied Entomology, 127, 340-347

Heckel D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M,Gould F, Tabashnik B E. 2007. The diversity of Bt resistancegenes in species of Lepitoptera. Journal of InvertebratePathology, 95, 192-197

Jackson R E, Ma M, Gould F. 2007. Cross-resistance responsesof CrylAc-selected Heliothis virescens (Lepidoptera:Noctuidae) to the Bacillus thuringiensis protein Vip3A.Journal of Economic Entomology, 100, 180-186

James C. 2009. Global Status of Commercialized Biotech/GMCrops: 2009. ISAAA Brief No. 41. ISAAA, Ithaca, NY.

Kranthi K R, Kranthi N R. 2004. Modelling adaptability of cottonbollworm, Helicoverpa armigera (Hübner) to Bt-cotton inIndia. Current Science, 87, 1096-1107

Lee M K, Paul M, Chen L S. 2006. Brush border membranebinding properties of Bacillus thuringiensis Vip3A toxinto Heliothis virescens and Helicoverpa zea Midguts.Biochemical and Biophysical Research Communication,339, 1043-1047

Lee M K, Walters F S, Hart H, Palekar N, Chen J S. 2003.The mode of action of Bacillus thuringiensis vegetativeinsecticidal protein Vip3A differs from that of Cry1Abendotoxin.Applied and Environmental Microbiology, 69,4648-4657

Li G P, Wu K M, Gould F, Wang J K, Miao J, Gao X W, Guo YY. 2007. Increasing tolerance to Cry1Ac cotton from cottonbollworm, Helicoverpa armigera, was confirmed in Bt cottonfarming area of China. Ecological Entomology, 32, 366-375

Liang G M, Wu K M, Rector B, Guo Y Y. 2007. Diapause, coldhardiness and ability of Cry1Ac-resistant and -susceptiblestrains of Helicoverpa armigera (Lepidoptera: Noctuidae).European Journal of Entomology, 104, 699-704

Liang G M, Wu K M, Yu H K, Li K K, Feng X, Guo Y Y. 2008.Changes of inheritance mode and fitness in Helicoverpaarmigera (Hübner) (Lepidoptera: Noctuidae) along with itsresistance evolution to Cry1Ac toxin. Journal of InvertebratePathology, 97, 142-149

Liu F, Xu Z, Zhu Y C, Huang F, Wang Y, Li H, Gao C, Zhou W, ShenJ. 2010. Evidence of field-evolved resistance to Cry1AcexpressingBt cotton in Helicoverpa armigera (Lepidoptera:Noctuidae) in northern China. Pest Management Science,66, 155-161

Mahon R J, Downes S J, James B. 2012. Vip3A resistancealleles exist at high levels in Australian targets before  release of cotton expressing this toxin. PLoS ONE, 7,e39192.

Masson L, Mazza A, Brousseau R. 1994. Stable immobilizationof lipid vesicles for kinetic studies using surface plasmonresonance. Analytical Biochemistry, 218, 405-412

Pellow J, Huang X, Anderson D, Meade T. 2002. Novel insectresistance traits from Dow AgroSciences. In: ProceedingBeltwide Cotton Conference. 2002. National Cotton Council,Memphis, TN. pp. 1239-1242

Robertson J L, Preisler H K. 1992. Pesticide Bioassays withArthropods. CRC Press, Boca Raton, FL.

SAS Institute. 1996. SAS/STAT user’s guide. ver. 6.0. SASInstitute, Cary, NC.

Schnepf E, Crickmore N, Van Rie J, Lereclus D, BaumJ, Feitelson J, Zeigler D R, Dean D H. 1998. Bacillusthuringiensis and its pesticidal crystal proteins. Microbiologyand Molecular Biology Reviews, 62, 775-806

Sena A D, Hernándea-Rodríguez C S, Ferré J. 2009. Interactionof Bacillus thuringiensis Cry1 and Vip3A protein withSpodoptera frugiperda midgut binding sites. Applied andEnvironmental Microbiology, 75, 2236-2237

Storer N P, Babcock J M, Schlenz M, Meade T, ThompsonG D, Bing J W, Huckaba R M. 2010. Discovery andcharacterization of field resistance to Bt maize: Spodopterafrugiperda (Lepidoptera: Noctuidae) in Puerto Rico. Journalof Economic Entomology, 103, 1031-1038

Tabashnik B E, Gassmann A J, Crowder D W, Carrière Y.2008. Insect resistance to Bt crops: Evidence versus theory.Nature Biotechnology, 26, 199-202

Tabashnik B E, Liu Y B, Dennehy T J, Sims M A, Sisterson MS, Biggs R W, Carrière Y. 2002. Inheritance of resistanceto Bt toxin Cry1Ac in a field-derived strain of Pinkbollworm (Lepidoptera: Gelechiidae). Journal of EconomicEntomology, 95, 1018-1026

Tabashnik B E, Van Rensburg J B, Carrière Y. 2009. Fieldevolvedinsect resistance to Bt crops: Definition, theory anddata. Journal of Economic Entomology, 102, 2011-2025

Tabashnik B E, Wu K M, Wu Y D. 2012. Early detection of fieldevolvedresistance to Bt cotton in China: Cotton bollwormand pink bollworm. Journal of Invertebrate Pathology, 110,301-306

Wu K M, Lu Y H, Feng H Q, Jiang Y Y, Zhao J Z. 2008.Suppression of cotton bollworm in multiple crops in Chinain areas with Bt toxin-containing cotton. Science, 321,1676-1678

Xu X J, Yu L Y, Wu Y D. 2005. Disruption of a cadherin geneassociated with resistance to Cry1Ac σ-endotoxin ofBacillus thuringiensis in Helicoverpa armigera. Applied andEnvironmental Microbiology, 71, 948-954

Yu C G, Mullins M A, Warren G W, Koziel M G, Estruch J J.1997. The Bacillus thuringiensis vegetative insecticidalprotein Vip3A lyses midgut epithelium cells of susceptibleinsects. Applied and Environmental Microbiology, 63,532-536

Zhang H, Yin W, Zhao J, Jin L, Yang Y, Wu S, Tabashnik B E,Wu Y. 2011. Early warning of cotton bollworm resistanceassociated with intensive planting of Bt cotton in China.PLoS ONE, 6, e22874.

Zhao J Z, Cao J, Collins H L, Bates S L, Roush R T, Earle ED, Shelton A M. 2005. Concurrent use of transgenic plantsexpressing a single and two Bacillus thuringiensis genesspeeds insect adaptation to pyramided plants. Proceedingsof the National Academy of Sciences of the United Statesof America, 102, 8426-8430
[1] ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao. Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1703-1712.
[2] LIU Ying-jie, ZHANG Dan-dan, YANG Li-yu, DONG Yong-hao, LIANG Ge-mei, Philip DONKERSLEY, REN Guang-wei, XU Peng-jun, WU Kong-ming . Analysis of phototactic responses in Spodoptera frugiperda using Helicoverpa armigera as control[J]. >Journal of Integrative Agriculture, 2021, 20(3): 821-828.
[3] ZHAO Xiao-fan. Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1417-1428.
[4] YANG Ya-jun, XU Hong-xing, WU Zhi-hong, LU Zhong-xian. pH influences the profiles of midgut extracts in Cnaphalocrocis medinalis (Guenée) and its degradation of activated Cry toxins[J]. >Journal of Integrative Agriculture, 2020, 19(3): 775-784.
[5] LIU Yu-xiao, ZHOU Zi-shan, LIANG Ge-mei, SONG Fu-ping, ZHANG Jie. Alanine-substituted mutant on Gly373 and Asn375 of Cry1Ai-h-loop 2 causes reduction in both toxicity and binding against Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1064-1071.
[6] WANG Ran, WANG Jin-da, CHE Wu-nan, SUN Yan, LI Wen-xiang, LUO Chen .
Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China
[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2571-2578.
[7] WANG Jing-jing, LI Xiang-ju, LI Dan, HAN Yu-jiao, LI Zheng, YU Hui-lin, CUI Hai-lan. Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne)[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2714-2723.
[8] LI Yan-qiu, SHU Chang-long, SHAN Yue-ming, GENG Li-li, SONG Fu-ping, ZHANG Jie. Complete genome sequence of Bacillus thuringiensis Bt185, a potential soil insect biocontrol agent[J]. >Journal of Integrative Agriculture, 2017, 16(03): 749-751.
[9] SONG Zhi-ru, PENG Qi, SHU Chang-long, ZHANG Jie, SUN Dong-mei, SONG Fu-ping. Identification of similar transcriptional regulatory mechanisms in multiple cry genes in Bacillus thuringiensis HD12[J]. >Journal of Integrative Agriculture, 2017, 16(01): 135-143.
[10] DENG Wei, YANG Qian, JIAO Hong-tao, ZHANG Yong-zhi, LI Xue-feng, ZHENG Ming-qi. Cross-resistance pattern to four AHAS-inhibiting herbicides of tribenuron-methyl-resistant flixweed (Descurainia sophia) conferred by Asp-376-Glu mutation in AHAS[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2563-2570.
[11] ZHOU Zi-shan, YANG Su-juan, SHU Chang-long, SONG Fu-ping, ZHOU Xue-ping, ZHANG Jie. Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1598-1603.
[12] JIN Rong, LIU Nai-yong, LIU Yan, DONG Shuang-lin. A larval specific OBP able to bind the major female sex pheromone component in Spodoptera exigua (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1356-1366.
[13] ZHANG Li-li, LIANG Ge-mei, GAO Xi-wu, CAO Guang-chun, GUO Yu-yuan. Characterization and functional analysis of β-1,3-galactosyltransferase involved in Cry1Ac resistance from Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(2): 337-346.
[14] SHA Pin-jie, FAN Yin-jun, WANG Zhi-chao, SHI Xue-yan. Response dynamics of three defense related enzymes in cotton leaves to the interactive stress of Helicoverpa armigera (Hübner) herbivory and omethoate application[J]. >Journal of Integrative Agriculture, 2015, 14(2): 355-364.
[15] LI Xiu-ying, LANG Zhi-hong, ZHANG Jie, HE Kang-lai, ZHU Li , HUANG Da-fang. Acquisition of Insect-Resistant Transgenic Maize Harboring a Truncated cry1Ah Gene via Agrobacterium-Mediated Transformation[J]. >Journal of Integrative Agriculture, 2014, 13(5): 937-944.
No Suggested Reading articles found!