Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (01): 135-143    DOI: 10.1016/S2095-3119(16)61398-9
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of similar transcriptional regulatory mechanisms in multiple cry genes in Bacillus thuringiensis HD12
SONG Zhi-ru1,  2*, PENG Qi2*, SHU Chang-long2, ZHANG Jie2, SUN Dong-mei1, SONG Fu-ping2

1 College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R.China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

Download: 
Export:  BibTeX | EndNote (RIS)      
Abstract  Bacillus thuringiensis subspecies morrisoni strain HD12, whose genome harbors multiple insecticidal protein-encoding genes, includes eight cry genes, as indicated by genome sequencing.  This strain produces crystals that are toxic to lepidopteran species.  These crystal inclusions were purified by sucrose gradients and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), followed by liquid chromatography-mass spectrometry, and found to contain five proteins (Cry1Da, Cry1Ae, Cry1Bb, Cry1Fb, and Cry1Ja).  The transcriptional activities of the cry1Da, cry1Ae, cry1Bb, cry1Fb, and cry1Ja promoters indicated that transcription of cry1Da is controlled by SigE; however, the other four cry genes were found to be controlled by both SigE and SigK.  The activities of the cry1Ja and cry1Fb promoters were the strongest among the five genes studied.  These promoters were therefore used to direct the expression of the Cry1Ac- and Cry2Ab-encoding genes concurrently in a single strain.  Our findings indicate that promoters with the same transcriptional profile may be used to direct the expression of different cry genes in one strain.  Our results are expected to be valuable for the construction of strains with efficient expression of multiple cry genes in order to overcome current limitations associated with the application of B. thuringiensis-based insecticides.
Keywords:  Bacillus thuringiensis      transcription      cry genes      insecticide  
Received: 20 April 2016   Accepted:
Fund: 

This work was supported by a grant from the National Natural Science Foundation of China (31530095 and 31300085).

Corresponding Authors:  SUN Dong-mei, Tel: +86-459-6819293, E-mail: sdmlzw@126.com; SONG Fu-ping, Tel: +86-10-62896634, E-mail: fpsong@ippcaas.cn    
About author:  SONG Zhi-ru, E-mail: songzhiru1990@163.com, PENG Qi, E-mail: qpeng@ippcaas.cn

Cite this article: 

SONG Zhi-ru, PENG Qi, SHU Chang-long, ZHANG Jie, SUN Dong-mei, SONG Fu-ping. 2017. Identification of similar transcriptional regulatory mechanisms in multiple cry genes in Bacillus thuringiensis HD12. Journal of Integrative Agriculture, 16(01): 135-143.

Agaisse H, Lereclus D. 1994a. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spo0A mutant. Journal of Bacteriology, 176, 4734–4741.

Agaisse H, Lereclus D. 1995. How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology, 177, 6027–6032.

Agaisse H, Lereclus D. 1994b. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Molecular Microbiology, 13, 97–107.

Arantes O, Lereclus D. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene, 108, 115–119.

Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Applied and Environmental Microbiology, 63, 4883–4890.

Bravo A, Agaisse H, Salamitou S, Lereclus D. 1996. Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis. Molecular & General Genetics, 250, 734–741.

Brizzard B L, Schnepf H E, Kronstad J W. 1991. Expression of the cryIB crystal protein gene of Bacillus thuringiensis. Molecular & General Genetics, 231, 59–64.

Brown K L. 1993. Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon. Journal of Bacteriology, 175, 7951–7957.

Deng C, Peng Q, Song F, Lereclus D. 2014. Regulation of cry gene expression in Bacillus thuringiensis. Toxins, 6, 2194–2209.

Dervyn E, Poncet S, Klier A, Rapoport G. 1995. Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177, 2283–2291.

Dower W J, Miller J F, Ragsdale C W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Research, 16, 6127–6145.

Du L, Qiu L, Peng Q, Lereclus D, Zhang J, Song F, Huang D. 2012. Identification of the promoter in the intergenic region between orf1 and cry8Ea1 controlled by sigma H factor. Applied and Environmental Microbiology, 78, 4164–4168.

Haldenwang W G. 1995. The sigma factors of Bacillus subtilis. Microbiological Reviews, 59, 1–30.

Lereclus D, Arantes O. 1992. spbA locus ensures the segregational stability of pTH1030, a novel type of gram-positive replicon. Molecular Microbiology, 6, 35–46.

Lereclus D, Arantes O, Chaufaux J, Lecadet M. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiology Letters, 51, 211–217.

Lereclus D, Vallade M, Chaufaux J, Arantes O, Rambaud S. 1992. Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Nature Biotechnology, 10, 418–421.

Liu G, Song L, Shu C, Wang P, Deng C, Peng Q, Lereclus D, Wang X, Huang D, Zhang J, Song F. 2013. Complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD73. Genome Announcements, 1, doi: 10.1128/genomeA.00080-13

de Maagd R A, Bosch D, Stiekema W. 1999. Toxin-mediated insect resistance in plants. Trends in Plant Science, 4, 9–13.

Peng Q, Kao G, Qu N, Zhang J, Li J, Song F. 2016. The regulation of exosporium-related genes in Bacillus thuringiensis. Scientific Reports, 6, doi: 10.1038/srep19005

Perchat S, Dubois T, Zouhir S, Gominet M, Poncet S, Lemy C, Aumont-Nicaise M, Deutscher J, Gohar M, Nessler S, Lereclus D. 2011. A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Molecular Microbiology, 82, 619–633.

Schaeffer P, Millet J, Aubert J P. 1965. Catabolic repression of bacterial sporulation. Proceedings of the National Academy of Sciences of the United States of America, 54, 704–711.

Shu C, Liu D, Zhou Z, Cai J, Peng Q, Gao J, Song F, Zhang J. 2013. An improved PCR-restriction fragment length polymorphism (RFLP) method for the identification of cry1-type genes. Applied and Environmental Microbiology, 79, 6706–6711.

Wang G, Zhang J, Song F, Wu J, Feng S, Huang D. 2006. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Applied Microbiology and Biotechnology, 72, 924–930.

Yang J, Peng Q, Chen Z, Deng C, Shu C, Zhang J, Huang D, Song F. 2013. Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis. Journal of Bacteriology, 195, 2887–2897.

Yoshisue H, Nishimoto T, Sakai H, Komano T. 1993. Identification of a promoter for the crystal protein-encoding gene cryIVB from Bacillus thuringiensis subsp. israelensis. Gene, 137, 247–251.

Yoshisue H, Sakai H, Sen K, Yamagiwa M, Komano T. 1997. Identification of a second transcriptional start site for the insecticidal protein gene cryIVA of Bacillus thuringiensis subsp. israelensis. Gene, 185, 251–255.

Zhang J, Schairer H U, Schnetter W, Lereclus D, Agaisse H. 1998. Bacillus popilliae cry18Aa operon is transcribed by sigmaE and sigmaK forms of RNA polymerase from a single initiation site. Nucleic Acids Research, 26, 1288–1293.

Zhang Z, Yang M, Peng Q, Wang G, Zheng Q, Zhang J, Song F. 2014. Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp. kurstaki HD73 is controlled by both δ54 and δK factors. Journal of Bacteriology, 196, 2934–2943.
[1] LI Ran, SUN Xi, LIANG Pei, GAO Xi-wu. Characterization of carboxylesterase PxαE8 and its role in multi-insecticide resistance in Plutella xylostella (L.)[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1713-1721.
[2] WANG Ran, ZHANG Jia-song, CHE Wu-nan, WANG Jin-da, LUO Chen . Genetics and fitness costs of resistance to flupyradifurone in Bemisia tabaci from China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1436-1443.
[3] ZHANG Dan-dan, XIAO Yu-tao, XU Peng-jun, YANG Xian-ming, WU Qiu-lin, WU Kong-ming. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 783-791.
[4] BAO Yan-yuan, ZHANG Chuan-xi. Recent advances in molecular biology research of a rice pest, the brown planthopper[J]. >Journal of Integrative Agriculture, 2019, 18(4): 716-728.
[5] ZHAO Yu-yu, SU Li, LI Shuai, LI Yi-ping, XU Xiang-li, CHENG Wei-ning, WANG Yi, WU Jun-xiang. Insecticide resistance of the field populations of oriental armyworm, Mythimna separata (Walker) in Shaanxi and Shanxi provinces of China[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1556-1562.
[6] TIAN Jing-jing, CHEN Xiang-ning, XIE Yuan-hong, LU Yong, XU Wen-tao, XU Li, DU Bin. Expression and characterization of a codon-optimized butyrylcholinesterase for analysis of organophosphate insecticide residues[J]. >Journal of Integrative Agriculture, 2016, 15(3): 684-693.
[7] MA Xiao-yan, WU Han-wen, JIANG Wei-li, MA Ya-jie, MA Yan. Weed and insect control affected by mixing insecticides with glyphosate in cotton[J]. >Journal of Integrative Agriculture, 2016, 15(2): 373-380.
[8] LI Dong-gang, SHANG Xiao-yong, Stuart Reitz, Ralf Nauen, LEI Zhong-ren, Si Hyeock Lee, GAO Yu-lin. Field resistance to spinosad in western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae)[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2803-2808.
[9] ZHANG Bin, ZUO Tai-qiang, LI Hong-gang, SUN Li-juan, WANG Si-fang, ZHENG Chang-ying, WAN Fang-hao. Effect of heat shock on the susceptibility of Frankliniella occidentalis (Thysanoptera: Thripidae) to insecticides[J]. >Journal of Integrative Agriculture, 2016, 15(10): 2309-2318.
[10] HU Zhen-di, FENG Xia, LIN Qing-sheng, CHEN Huan-yu, LI Zhen-yu, YIN Fei, LIANG Pei, GAO Xi-wu. cDNA cloning and characterization of the carboxylesterase pxCCE016b from the diamondback moth, Plutella xylostella L.[J]. >Journal of Integrative Agriculture, 2016, 15(05): 1059-1068.
[11] YANG Dai-bin, ZHANG Lin-na, YAN Xiao-jing, WANG Zhen-ying , YUAN Hui-zhu. Effects of Droplet Distribution on Insecticide Toxicity to Asian Corn Borers (Ostrinia furnaealis) and Spiders (Xysticus ephippiatus)[J]. >Journal of Integrative Agriculture, 2014, 13(1): 124-133.
[12] LUAN Jun-bo, XU Jing, LIN Ke-ke, Myron P Zalucki , LIU Shu-sheng. Species Exclusion Between an Invasive and an Indigenous Whitefly on Host Plants with Differential Levels of Suitability[J]. >Journal of Integrative Agriculture, 2012, 11(2): 215-224.
[13] Svetlana Kontsedalov, Fauzi Abu-Moch, Galina Lebedev, Henryk Czosnek, A Rami Horowitz , MuradGhanim . Bemisia tabaci Biotype Dynamics and Resistance to Insecticides in Israel During the Years 2008-2010[J]. >Journal of Integrative Agriculture, 2012, 11(2): 312-320.
No Suggested Reading articles found!