Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (3): 533-540    DOI: 10.1016/S2095-3119(13)60709-1
Section 2: Crop Improvement by iochar Soil Amendment Advanced Online Publication | Current Issue | Archive | Adv Search |
Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures
 LUO Yu, JIAO Yu-jie, ZHAO Xiao-rong, LI Gui-tong, ZHAO Li-xin , MENG Hai-bo
1、Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, Beijing 100125, P.R.China
2、College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R.China
3、Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture/Chinese Academy of Agricultural Engineering, Beijing 100125, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.

Abstract  Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500°C) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.
Keywords:  biochar       feedstock       temperature       maize       soil  
Received: 09 October 2013   Accepted: 12 March 2014
Fund: 

The study was supported by the National Natural Science Foundation of China (41171211) and the Special Fund for Agro-Scientific Research in the Public Interest, China (201303095-2).

Corresponding Authors:  LI Gui-tong, Tel: +86-10-62732963, E-mail: lgtong@cau.edu.cn     E-mail:  lgtong@cau.edu.cn
About author:  LUO Yu

Cite this article: 

LUO Yu, JIAO Yu-jie, ZHAO Xiao-rong, LI Gui-tong, ZHAO Li-xin , MENG Hai-bo. 2014. Improvement to Maize Growth Caused by Biochars Derived From Six Feedstocks Prepared at Three Different Temperatures. Journal of Integrative Agriculture, 13(3): 533-540.

Asadullah M, Zhang S, Min Z H, Yimsiri P, Li C. 2010. Evaluation of structural features of chars from pyrolysis of biomass of different particle sizes. Fuel Processing Technology, 91, 877-881

 Baldock J A, Smernik R J. 2002. Chemical composition and bioavailability of thermally altered Pinusresinosa (Red pine) wood. Organic Geochemistry, 33, 1093-1109

 Bauer A, Black A L. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal, 58, 185-193

 Beesley L, Moreno-Jiménez E, Gomez-Eyles L, Harris E, Robinson B, Sizmur T. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 159, 3269-3282

 Chan K Y, Xu Z. 2009. Biochar for environmental management science and technology. In: Lehmann J, Joseph S, eds., Biochar: Nutrient Properties and their Enhancement. Earthscan, London. pp. 67-84

 DeLuca T H, MacKenzie M D, Gundale M J. 2009. Biochar effects on soil nutrient transformations. In: Lehmann J, Joseph S, eds., Biochar for Environmental Management. Sterling, London. pp. 251-270

 DeLuca T H, MacKenzie M D, Gundale M J, Holben W E. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of America Journal, 70, 448.

Enders A, Whitman T, Joseph S, Lehmann J. 2012. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644-653

 Goldberg E D. 1985. Black Carbon in the Environment. John Wiley, New York. pp. 198-199

 Hossain M K, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228

 Jeffery S, Verheijen F G A, Van V M, Bastos A C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144, 175-187

 Kwapinski W, Byrne C M P, Kryachko E, Wolfram P, Adley C, Novotny E H, Hayes M H B. 2010. Biochar from biomass and waste. Waste Biomass Valorization, 1, 177-189

 Kuzyakov Y, Subbotina I, Chen H Q, Bogomolova I, Xu X L. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology & Biochemistry, 41, 210-219

 Laird D, Fleming P, Wang B, Horton R, Karlen D. 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436-442

 Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623- 1627.

Lehmann J. 2007a. A handful of carbon. Nature, 447, 143- 144.

Lehmann J. 2007b. Bio-energy in the black. Frontiers in Ecology and the Environment, 5, 381-387

 Lehmann J, Gaunt J. 2006. Bio-char sequestration in terrestrial ecosystems. Mitigation and Adaptation Strategies for Global Change, 11, 395-419

 Lehmann J, Joseph S. 2009. Biochar for Environmental Management: Science and Technology. Sterling, VA, Earthscan, London. p. 416.

Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad J, Thies J, Luizão F J, Petersen J, et al. 2006. Black carbon increases cationexchange capacity in soils. Soil Science Society of America Journal, 70, 1719.

Luo R K. 1996. Soil Chemistry Analytical Method. China Agricultural Science and Technology Publishing House, Beijing.

Luo Y, Durenkamp M, Denobili, Lin Q M, Brookes P C. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology & Biochemistry, 43, 2304-2314

 Luo Y, Durenkamp M, Denobili, Lin Q M, Devonshire B J, Brookes P C. 2013. Microbial biomass growth, following incorporation of biochars produced at 350°C or 700°C, in a silty-clay loam soil of high and low pH. Soil Biology and Biochemistry, 57, 513-523

 Mathews J A. 2008. Carbon-negative biofuels. Energy Policy, 36, 940-945

 Nguyen B T, Lehmann J. 2009. Black carbon decomposition under varying water regimes. Organic Geochemistry, 40, 846-853

 Peng X, Ye L L, Wang C H, Zhou H, Sun B. 2011. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112, 159-166

 Ro K S, Cantrell K B, Hunt P G. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Industrial & Engineering Chemistry Research, 49, 10125-10131

 Sanchez M E, Lindao E, Margaleff D, Martinez O, Moran A. 2009. Bio-Fuels and bio-char production from pyrolysis of sewage sludge. Journal of Residuals Science & Technology, 6, 35-41

 Steiner C, Teixeira W G, Lehmann J, Nehls T, Macêdo J L V, Blum W E H, Zech W. 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291, 275-290

 Verheijen F G A, Jeffery S, Bastos A C, Vander V M, Diafas I. 2010. Biochar Application to Soils: a Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Office for the Official Publications of the European Communities, Luxembourg. Woolf D, Amonette J E, Street P, Alayne F, Lehmann J, Joseph S. 2010. Sustainable biochar to mitigate global climate change. Nature Communications, 1, 1-9

 Yuan J H, Xu R K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102, 3488-3497

 van Zwieten L, Kimber S, Morris S. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235- 246.
[1] GAO Xing, LI Yong-xiang, YANG Ming-tao, LI Chun-hui, SONG Yan-chun, WANG Tian-yu, LI Yu, SHI Yun-su. Changes in grain-filling characteristics of single-cross maize hybrids released in China from 1964 to 2014[J]. >Journal of Integrative Agriculture, 2023, 22(3): 691-700.
[2] XU Chun-mei, XIAO De-shun, CHEN Song, CHU Guang, LIU Yuan-hui, ZHANG Xiu-fu, WANG Dan-ying.

Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions [J]. >Journal of Integrative Agriculture, 2023, 22(3): 923-934.

[3] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
[4] Irshad AHMAD, Maksat BATYRBEK, Khushnuma IKRAM, Shakeel AHMAD, Muhammad KAMRAN, Misbah, Raham Sher KHAN, HOU Fu-jiang, HAN Qing-fang.

Nitrogen management improves lodging resistance and production in maize (Zea mays L.) at a high plant density [J]. >Journal of Integrative Agriculture, 2023, 22(2): 417-433.

[5] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[6] LI Hao-ruo, SONG Xiao-tong, Lars R. BAKKEN, JU Xiao-tang. Reduction of N2O emissions by DMPP depends on interaction of nitrogen source (digestate vs. urea) with soil properties[J]. >Journal of Integrative Agriculture, 2023, 22(1): 251-264.
[7] CHEN Zhe, REN Wei, YI Xia, LI Qiang, CAI Hong-guang, Farhan ALI, YUAN Li-xing, MI Guo-hua, PAN Qing-chun, CHEN Fan-jun. Local nitrogen application increases maize post-silking nitrogen uptake of responsive genotypes via enhanced deep root growth[J]. >Journal of Integrative Agriculture, 2023, 22(1): 235-250.
[8] WANG Qiong, QIN Zhen-han, ZHANG Wei-wei, CHEN Yan-hua, ZHU Ping, PENG Chang, WANG Le, ZHANG Shu-xiang, Gilles COLINET. Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2720-2733.
[9] REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2767-2776.

[10] LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
[11] GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin.

Genetic dissection of ear-related traits using immortalized F2 population in maize [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2492-2507.

[12] HAN Yu-ling, GUO Dong, MA Wei, GE Jun-zhu, LI Xiang-ling, Ali Noor MEHMOOD, ZHAO Ming, ZHOU Bao-yuan. Strip deep rotary tillage combined with controlled-release urea improves the grain yield and nitrogen use efficiency of maize in the North China Plain[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2559-2576.
[13] SANG Zhi-qin, ZHANG Zhan-qin, YANG Yu-xin, LI Zhi-wei, LIU Xiao-gang, XU Yunbi, LI Wei-hua. Heterosis and heterotic patterns of maize germplasm revealed by a multiple-hybrid population under well-watered and drought-stressed conditions[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2477-2491.
[14] MA Da-ling, XIE Rui-zhi, YU Xiao-fang, LI Shao-kun, GAO Ju-lin. Historical trends in maize morphology from the 1950s to the 2010s in China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2159-2167.
[15] YIN Tao, QIN Hong-ling, YAN Chang-rong, LIU Qi, HE Wen-qing. Low soil carbon saturation deficit limits the abundance of cbbL-carrying bacteria under long-term no-tillage maize cultivation in northern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2399-2412.
No Suggested Reading articles found!