Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (5): 765-772    DOI: 10.1016/S2095-3119(13)60298-1
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of Quantitative Trait Loci for Phytic Acid Concentration in Maize Grain Under Two Nitrogen Conditions
 LIU Jian-chao, HUANG Ya-qun, MA Wen-qi, ZHOU Jin-feng, BIAN Fen-ru, CHEN Fan-jun , MI Guo-hua
1.Key Lab of Plant-Soil Interaction, Ministry of Education/College of Resources and Environmental Sciences, China Agricultural University,Beijing 100193, P.R.China
2.Key Lab of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture/College of Agronomy,Northwest A&F University, Yangling 712100, P.R.China
3.College of Agronomy, Agricultural University of Hebei, Baoding 071001, P.R.China
4.College of Resources and Environmental Sciences, Agricultural University of Heibei, Baoding 071001, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Phytic acid (PA) is the main storage form of phosphorus (P) in seeds. It can form insoluble complexes with microelements, thereby reducing their bioavailability for animals. Identification of quantitative trait loci (QTLs) associated with grain PA concentration (PAC) is essential to improve this trait without affecting other aspects of grain nutrition such as protein content. Using a recombinant inbred line (RIL) population, we mapped QTL for grain PAC, as well as grain nitrogen concentration (NC) and P concentration (PC) in maize under two N conditions in 2 yr. We detected six QTLs for PAC. The QTL for PAC on chromosome 4 (phi072-umc1276) was identified under both low-N and high-N treatments, and explained 13.2 and 15.4% of the phenotypic variance, respectively. We identified three QTLs for grain NC, none of which were in the same region as the QTLs for PAC. We identified two QTLs for PC in the low-N treatment, one of which (umc1710-umc2197) was in the same interval as the QTL for PAC under high-N conditions. These results suggested that grain PAC can be improved without affecting grain NC and inorganic PC.

Abstract  Phytic acid (PA) is the main storage form of phosphorus (P) in seeds. It can form insoluble complexes with microelements, thereby reducing their bioavailability for animals. Identification of quantitative trait loci (QTLs) associated with grain PA concentration (PAC) is essential to improve this trait without affecting other aspects of grain nutrition such as protein content. Using a recombinant inbred line (RIL) population, we mapped QTL for grain PAC, as well as grain nitrogen concentration (NC) and P concentration (PC) in maize under two N conditions in 2 yr. We detected six QTLs for PAC. The QTL for PAC on chromosome 4 (phi072-umc1276) was identified under both low-N and high-N treatments, and explained 13.2 and 15.4% of the phenotypic variance, respectively. We identified three QTLs for grain NC, none of which were in the same region as the QTLs for PAC. We identified two QTLs for PC in the low-N treatment, one of which (umc1710-umc2197) was in the same interval as the QTL for PAC under high-N conditions. These results suggested that grain PAC can be improved without affecting grain NC and inorganic PC.
Keywords:  maize       nitrogen       phosphorus       phytic acid       QTL  
Received: 26 April 2012   Accepted:
Fund: 

This study was supported by the National Basic Research Program of China (2011CB100305), the National Science Foundation of China (30890131, 31172015, 31121062), the Hebei Province Key Technology R&D Program, China (12225510D), the Special Fund for Agriculture Profession, China (201103003), and the Chinese University Scientific Fund (2011JS163).

Corresponding Authors:  Correspondence MI Guo-hua, Tel: +86-10-62734454, E-mail: miguohua@cau.edu.cn; CHEN Fan-jun, Tel: +86-10-62734454, E-mail: caucfj@cau.edu.cn   

Cite this article: 

LIU Jian-chao, HUANG Ya-qun, MA Wen-qi, ZHOU Jin-feng, BIAN Fen-ru, CHEN Fan-jun , MI Guo-hua. 2013. Identification of Quantitative Trait Loci for Phytic Acid Concentration in Maize Grain Under Two Nitrogen Conditions. Journal of Integrative Agriculture, 12(5): 765-772.

[1]Bertin P, Gallais A. 2000. Genetic variation for nitrogen useefficiency in a set of recombinant inbred lines I -agrophysiological results. Maydica, 45, 53-66

[2]Blair M W, Sandoval T A, Caldas G V, Beebe S E, Paez M I.2009. Quantitative trait locus analysis of seedphosphorus and seed phytate content in a recombinantinbred line population of common bean. Crop Science,49, 237-246

[3]Bregitzer P, Raboy V. 2006. Effects of four independent lowphytatemutations on barley agronomic performance.Crop Science, 46, 1318-1322

[4]Churchill G A, Doerge R W. 1994. Empirical threshold valuesfor quantitative trait mapping. Genetics, 138, 963-971

[5]Dai F, Wang J M, Zhang S H, Xu X X, Zhang G P. 2007.Genotypic and environmental variation in phytic acidcontent and its relation to protein content and maltquality in barley. Food Chemistry, 105, 606-611

[6]Dragicevic V, Kovacevic D, Sredojevic S, Dumanovic Z,Drinic S M. 2010. The variation of phytic and inorganicphosphorus in leaves ad grain in maize populations.Genetika, 42, 555-563

[7]Drinic S M, Ristic D, Sredojevic S, Dragicevic V, Micic D I,Delic N. 2009. Genetic variation of phytate andionorganic phosphorus in maize population. Genetika,41, 107-115

[8]Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R.2000. Potential for increasing the content andbioavailability of Fe, Zn, and Ca in plants for humannutrition. Journal of Science of Food and Agriculture,80, 861-879

[9]Guttieri M J, Peterson K M, Souza E J. 2006. Agronomicperformance of low phytic acid wheat. Crop Science,46, 2623-2629

[10]Henrik B P, Lisbeth D S, Preben B H. 2002. Engineeringcrop plant: getting a handle on phosphate. Trends PlantScience, 7, 118-124

[11]Horvatic M, Balint L. 1996. Relationship among the phyticacid and protein content during maize grain maturation.Journal of Agronomy and Crop Science, 176, 73-77

[12]Knapp S J, Stroup W W, Ross W M. 1985. Exact confidenceintervals for heritability on a progeny mean basis. CropScience, 25, 192-194

[13]Liu J C, Cai H G, Chu Q, Chen X H, Chen F J, Yuan L H, MiG H, Zhang F S. 2011. Genetic analysis of vertical rootpulling resistance (VRPR) in maize ueing two geneticpopuations. Molecular Breeding, 28, 463-474

[14]Liu J X, Chen F J, Olokhnuud C, Glass A D M, Tong Y P, Zhang F S, Mi G H. 2009. Root size and nitrogen-uptakeactivity in two maize (Zea mays L.) inbred lines differingin nitrogen-use efficiency. Journal of Plant Nutritionand Soil Science, 172, 230-236

[15]Liu Z H, Cheng F M, Cheng W D, Zhang G P. 2005.Positional variations in phytic acid and protein contentwithin a panicle of japonica rice. Journal of CerealScience, 41, 297-303

[16]Lorenz A, Scott P, Lamkey K. 2008. Genetic variation andbreeding potential of phytate and inorganicphosphorus in a maize population. Crop Science, 48,79-84

[17]Lott J N A, West M M. 2001. Elements present in mineralnutrient reserves in dry Arabidopsis thaliana seeds ofwild type and pho1, pho2, and man1 mutants. CanadianJournal of Botany, 79, 1292-1296

[18]Ma L, Li P, Chen Z, Zhao Y F, Zhu L Y, Huang Y Q, Chen JT. 2011. Genetic analysis and identification of maize(Zea mays L.) low phytic acid inbred lines. ScientiaAgricultura Sinica, 44, 447-455

[19](in Chinese)Ning H F, Liu Z H, Wang Q S, Lin Z M, Chen S J, Li G H,Wang S H, Ding Y F. 2009. Effect of nitrogen fertilizerapplication on grain phytic acid and protein contentsin japonica rice and its variations with genotypes.Journal of Cereal Science, 50, 49-55

[20]Raboy V. 2001. Seeds for a better future: ‘low phytate’grains help to overcome malnutrition and reducepollution. Trends in Plant Science, 6, 458-462

[21]Raboy V, Dickinson D B. 1984. Effect of phosphorus andzinc nutrition on soybean seed phytic acid and zinc.Plant Physiology, 75, 1094-1098

[22]Raboy V, Dickinson D B, Neuffer M G. 1990. A survey ofmaize kernel mutants for variation in phytic acid.Maydica, 35, 383-390

[23]Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett SG, Bauman A T, Murthy P P N, Sheridan W F, Ertl D S.2000. Origin and seed phenotype of maize low phyticacid 1-1 and low phytic acid 2-1 Plant Physiology,124, 355-368

[24]Rivera-Reyes J G, Peraza-Luna F A, Serratos-Arévalo J C,Posos-Ponce P, Guzmán-Maldonado S H, Cortez-Baheza E, Castañón-Nájera G, Mendoza-Elos M. 2009.Effect of nitrogen and phosphorus fertilization on phyticacid concentration and vigor of oat seed (var. Saia) inMexico. Phyton (B. Aires), 78, 37-42

[25]Shi J R, Wang H Y, Wu Y S, Hazebroek J, Meeley R B, ErtlD S. 2003. The maize low-phytic acid mutant lpa2 iscaused by mutation in an inositol phosphate kinasegene. Plant Physiology, 131, 507-515

[26]Shi J R, Wang H Y, Hazebroek J, Ertl D S, Harp T. 2005. Themaize low-phytic acid 3 encodes myo-inositol kinasethat plays a role in phytic acid biosynthesis indeveloping seeds. The Plant Journal, 42, 708-719

[27]Thavarajah D, Thavarajah P, See C T, Vandenberg A. 2010.Phytic acid and Fe and Zn concentration in lentil (Lensculinaris L.) seeds is influenced by temperature duringseed filling period. Food Chemistry, 122, 254-259

[28]Veum T L, Ledoux D R, Raboy V, Ertl D S. 2001. Low-phyticacid corn improves nutrient utilization for growing pigs.Journal of Animal Science, 79, 2873-2880

[29]Zhao H J, Liu Q L, Fu H W, Xu X H, Wu D X, Shu Q Y. 2008.Effect of non-lethal low phytic acid mutations on grainyield and seed viability in rice. Field Crops Research,108, 206-211.
[1] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[2] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[3] Xiaowei Zhu, Min Wang, Xiang Tai, Panling Lu, Hang Gui, Jinxiu Chen, Tianyue Bo. Candidate gene analysis of cabbage head-splitting resistance based on QTL mapping and omics profiling[J]. >Journal of Integrative Agriculture, 2026, 25(2): 709-720.
[4] Ligong Peng, Sicheng Deng, Wentao Yi, Yizhu Wu, Yingying Zhang, Xiangbin Yao, Pipeng Xing, Baoling Cui, Xiangru Tang. Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma[J]. >Journal of Integrative Agriculture, 2026, 25(1): 273-289.
[5] Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops[J]. >Journal of Integrative Agriculture, 2026, 25(1): 302-312.
[6] Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization[J]. >Journal of Integrative Agriculture, 2026, 25(1): 262-272.
[7] Haobo Fan, Farman Wali, Pengjuan Hu, Haixia Dong, Haiqiang Li, Dan Liang, Jingru Shen, Mingxia Gao, Hao Feng, Benhua Sun. Sustainable phosphorus (P) management: Impact of low P input with enhancement measures on soil P fractions and crop yield performance on a calcareous soil[J]. >Journal of Integrative Agriculture, 2026, 25(1): 290-301.
[8] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[9] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[10] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[11] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[12] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[13] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[14] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
[15] Xiaoqing Wang, Wenjiao Shi, Qiangyi Yu, Xiangzheng Deng, Lijun Zuo, Xiaoli Shi, Minglei Wang, Jun Li. Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3264-3281.
No Suggested Reading articles found!