Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1209-1222    DOI: 10.1016/j.jia.2025.05.005
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Opportunistic keystone diazotrophs from co-occurrence networks drive biological nitrogen fixation in peanut/cotton intercropping systems 

Shijie Zhang1, 3, Yingchun Han2, Guoping Wang2, Lu Feng1, 2, Yaping Lei2, Shiwu Xiong2, Beifang Yang2, Xiaoyu Zhi2, Minghua Xin2, Yahui Jiao2, Xiaofei Li2#, Yabing Li1, 2#, Zhen Jiao1, 3#

1 Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/School of Agriculture and Biomanufacturing, Zhengzhou University, Zhengzhou 450001, China

2 State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

3 Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China

 Highlights 
Intercropping and rhizosphere soils significantly enhanced BNF potentials by 7.8–323.0%.
Heterogeneous selection primarily drove diazotrophic community assembly.
Opportunistic diazotrophs dominated networks and acted as keystone taxa enhancing BNF.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

豆科作物间作可增强非共生生物固氮(BNF作用,但其潜在机制,尤其不同生态位宽度的土壤关键固氮菌类群在其中发挥的作用仍不明确。本研究通过田间试验,评估了花生/棉花间作与各自单作条件下根际与非根际土壤中BNF活性的变化。通过固速率、固氮酶活性以及nifH基因丰度结合微生物系统发育模型、共现网络及生态位度分析,探讨关键固氮类群及其生态功能BNF的关系。结果显示,与非根际土壤相比,根际土壤的BNF潜力提高了7.8%–125.5%;与单作相比,花生/棉花间作系统中固氮速率、固氮酶活性和nifH基因丰度提升了11.6%–323.0%P<0.05)。固氮菌群落组成与多样性存在显著差异间作系统与根际土壤中增加了大部分变形菌门α-变形菌外)、降低了蓝藻门和厚壁菌门的相对丰度固氮菌的群落构建主要受确定性过程驱动,尤其是异质性选择过程,在根际(91.9%)和间作土壤(86.3%)中占主导地位此外,间作系统与根际土壤中固氮菌共现网络更复杂、连接性更强,其中,优势类群为机会型固氮菌(78.8%–85.9%),其次为特化型(10.2%–18.5%)和泛化型(1.38%–3.80%)。网络关键类群机会型的AzoarcusAzohydromonas Steroidobacter泛化型的Pseudomonas  Azotobacter以及土壤微生物量碳和硝态氮,与间作系统和根际土壤BNF活性的增强显著相关。花生/棉花间作通过选择性招募生态功能不同的关键固氮类群,尤其是机会型固氮菌,从而提升农田BNF潜力促进农业可持续发展。



Abstract  

Legume-based intercropping enhances asymbiotic biological nitrogen fixation (BNF); however, the underlying mechanisms remain unclear, including the roles of soil keystone diazotroph taxa with varying niche breadths.  A field experiment was conducted to evaluate soil BNF variations between rhizosphere and bulk soils in peanut/cotton intercropping systems and monocultures.  BNF activities were measured by nitrogen fixation rates, nitrogenase activity, and nifH gene abundance.  Phylogenetic null models, co-occurrence networks, and niche breadth analysis were applied to investigate the roles of diazotrophic keystone taxa and their ecological niches.  Rhizosphere soils exhibited 7.8–125.5% higher BNF potentials than bulk soils, whereas intercropping systems showed 11.6–323.0% increases over monocultures for nitrogen fixation rate, nitrogenase activity, and nifH gene abundance (all P<0.05).  Diazotrophic community composition and diversity differed significantly, with Proteobacteria (excluding Alphaproteobacteria) enriched in intercropping and rhizosphere soils, while Cyanobacteria and Firmicutes were less abundant.  Deterministic processes, particularly heterogeneous selection, dominated community assembly in the rhizosphere (91.9%) and intercropping soils (86.3%).  The co-occurrence networks consistently revealed more complex and interconnected communities in intercropping and rhizosphere soils that were dominated by opportunistic diazotrophs (78.8–85.9%), followed by specialists (10.2–18.5%) and generalists (1.38–3.80%).  Keystone taxa, including opportunists such as Azoarcus, Azohydromonas, and Steroidobacter, and generalists like Pseudomonas and Azotobacter, correlated positively with microbial biomass carbon and nitrate nitrogen, contributing to enhanced BNF.  Peanut/cotton intercropping enhances BNF by selectively enriching the keystone diazotrophic taxa with varying ecological roles, particularly opportunists and generalists.  Such targeted intercropping strategies can optimize BNF, improve soil fertility, and promote sustainable agricultural production.

Keywords:  biological nitrogen fixation       community assembly       habitat ecotypes       keystone diazotroph taxa  
Received: 13 January 2025   Accepted: 21 April 2025 Online: 14 May 2025  
Fund: 

This work was financially supported by the National Natural Science Foundation of China (32301962 and 31901127), the China Postdoctoral Science Foundation (2024M752947), the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (GZC20232437), the State Key Laboratory of Cotton Bio-breeding and Integrated Utilization Open Fund, China (CB2023C02), and the Natural Science Foundation of Henan Province, China (252300420222).

About author:  Shijie Zhang, E-mail: sjzhang@zzu.edu.cn; #Correspondence Xiaofei Li, E-mail: lixiaofei01@caas.cn; Yabing Li, E-mail: criliyabing1@163.com; Zhen Jiao, E-mail: jiaozhen@zzu.edu.cn

Cite this article: 

Shijie Zhang, Yingchun Han, Guoping Wang, Lu Feng, Yaping Lei, Shiwu Xiong, Beifang Yang, Xiaoyu Zhi, Minghua Xin, Yahui Jiao, Xiaofei Li, Yabing Li, Zhen Jiao. 2026. Opportunistic keystone diazotrophs from co-occurrence networks drive biological nitrogen fixation in peanut/cotton intercropping systems . Journal of Integrative Agriculture, 25(3): 1209-1222.

Banerjee S, Schlaeppi K, Van Der Heijden M G A. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.

Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere: Plant species, soil type and rhizosphere communities. FEMS Microbiology Ecology68, 1–13.

Brooker R W, Bennett A E, Cong W, Daniell T J, George T S, Hallett P D, Hawes C, Iannetta P P M, Jones H G, Karley A J, Li L, McKenzie B M, Pakeman R J, Paterson E, Schöb C, Shen J, Squire G, Watson C A, Zhang C, Zhang F, et al. 2015. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist206, 107–117.

Chen W, Ren K, Isabwe A, Chen H, Liu M, Yang J. 2019. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome7, 138.

Chen Y J, Leung P M, Wood J L, Bay S K, Hugenholtz P, Kessler A J, Shelley G, Waite D W, Franks A E, Cook P L M, Greening C. 2021. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. The ISME Journal15, 2986–3004.

Chi B, Liu J, Dai J, Li Z, Zhang D, Xu S, Nie J, Wan S, Li C, Dong H. 2023. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crops Research302, 109059.

Chi B, Zhang Y, Zhang D, Zhang X, Dai J, Dong H. 2019. Wide-strip intercropping of cotton and peanut combined with strip rotation increases crop productivity and economic returns. Field Crops Research243, 107617.

Dang P, Lu C, Huang T, Zhang M, Yang N, Han X, Xu C, Wang S, Wan C, Qin X, Siddique K H M. 2024. Enhancing intercropping sustainability: Manipulating soybean rhizosphere microbiome through cropping patterns. Science of the Total Environment931, 172714.

Dehling D M, Bender I M A, Blendinger P G, Böhning-Gaese K, Muñoz M C, Neuschulz E L, Quitián M, Saavedra F, Santillán V, Schleuning M, Stouffer D B. 2021. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Functional Ecology35, 1810–1821.

Dittmann G, Ding S, Hopmans E C, Schröter S A, Orme A M, Kothe E, Lange M, Gleixner G. 2025. Bioavailable carbon additions to soil promote free-living nitrogen fixation and microbial biomass growth with N-free lipids. Soil Biology & Biochemistry203, 109748.

Duchene O, Vian J F, Celette F. 2017. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. AgricultureEcosystems & Environment240, 148–161.

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

Fan F, Zhang F, Song Y, Sun J, Bao X, Guo T, Li L. 2006. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil283, 275–286.

Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y, Chu H. 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome7, 143.

Feng K, Peng X, Zhang Z, Gu S, He Q, Shen W, Wang Z, Wang D, Hu Q, Li Y, Wang S, Deng Y. 2022. iNAP: An integrated network analysis pipeline for microbiome studies. iMeta1, e13.

Fierer N, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology88, 1354–1364.

Fridley J D, Vandermast D B, Kuppinger D M, Manthey M, Peet R K. 2007. Co-occurrence based assessment of habitat generalists and specialists: A new approach for the measurement of niche width. Journal of Ecology95, 707–722.

Hu H, Li H, Hao M, Ren Y, Zhang M, Liu R, Zhang Y, Li G, Chen J, Ning T, Kuzyakov Y. 2021. Nitrogen fixation and crop productivity enhancements co-driven by intercrop root exudates and key rhizosphere bacteria. Journal of Applied Ecology58, 2243–2255.

Hu W, Wang X M, Wang X, Xu Y, Li R, Zhao L, Ren W, Teng Y. 2023. Enhancement of nitrogen fixation and diazotrophs by long-term polychlorinated biphenyl contamination in paddy soil. Journal of Hazardous Materials446, 130697.

Hu W, Wang X M, Xu Y, Wang X, Guo Z, Pan X, Dai S, Luo Y, Teng Y. 2024. Biological nitrogen fixation and the role of soil diazotroph niche breadth in representative terrestrial ecosystems. Soil Biology & Biochemistry189, 109261.

Jiang Y, Han S, Luo X. 2024. Role of generalists, specialists and opportunists in Nitrospira community assembly in soil aggregates from nearby cropland and grassland areas in a campus. Applied Soil Ecology198, 105377.

Jing B, Shi W, Wang H, Lin F. 2023. 15N labeling technology reveals enhancement of nitrogen uptake and transfer by root interaction in cotton/soybean intercropping. Journal of the Science of Food and Agriculture103, 6307–6316.

Li B, Li Y, Wu H M, Zhang F, Li C, Li X, Lambers H, Li L. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America113, 6496–6501.

Li Y, Gu X, Yong T, Yang W. 2024. A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables. Soil Biology & Biochemistry191, 109318.

Liu C, Li X, Mansoldo F R P, An J, Kou Y, Zhang X, Wang J, Zeng J, Vermelho A B, Yao M. 2022. Microbial habitat specificity largely affects microbial co-occurrence patterns and functional profiles in wetland soils. Geoderma418, 115866.

Lu J, Liu Y, Zou X, Zhang X, Yu X, Wang Y, Si T. 2024. Rotational strip peanut/cotton intercropping improves agricultural production through modulating plant growth, root exudates, and soil microbial communities. AgricultureEcosystems & Environment359, 108767.

Luo J, Banerjee S, Ma Q, Liao G, Hu B, Zhao H, Li T. 2023. Organic fertilization drives shifts in microbiome complexity and keystone taxa increase the resistance of microbial mediated functions to biodiversity loss. Biology and Fertility of Soils59, 441–458.

Ma J, Bei Q, Wang X, Lan P, Liu G, Lin X, Liu Q, Lin Z, Liu B, Zhang Y, Jin H, Hu T, Zhu J, Xie Z. 2019. Impacts of Mo application on biological nitrogen fixation and diazotrophic communities in a flooded rice-soil system. Science of the Total Environment649, 686–694.

Magoč T, Salzberg S L. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

De Matos G F, Rouws L F M , Simões-Araújo J L, Baldani J I. 2021. Evolution and function of nitrogen fixation gene clusters in sugarcane associated Bradyrhizobium strains. Environmental Microbiology23, 6148–6162.

Nuccio E E, Starr E, Karaoz U, Brodie E L, Zhou J, Tringe S G, Malmstrom R R, Woyke T, Banfield J F, Firestone M K, Pett-Ridge J. 2020. Niche differentiation is spatially and temporally regulated in the rhizosphere. The ISME Journal14, 999–1014.

Pandit S N, Kolasa J, Cottenie K. 2009. Contrasts between habitat generalists and specialists: An empirical extension to the basic metacommunity framework. Ecology90, 2253–2262.

Philippot L, Chenu C, Kappler A, Rillig M C, Fierer N. 2024. The interplay between microbial communities and soil properties. Nature Reviews Microbiology22, 226–239.

Philippot L, Raaijmakers J M, Lemanceau P, van der Putten W H. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology11, 789.

Poly F, Monrozier L J, Bally R. 2001. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology152, 95–103.

Qiao M, Sun R, Wang Z, Dumack K, Xie X, Dai C, Wang E, Zhou J, Sun B, Peng X, Bonkowski M, Chen Y. 2024. Legume rhizodeposition promotes nitrogen fixation by soil microbiota under crop diversification. Nature Communications15, 2924.

Qiu Y, Li X, Tang Y, Xiong S, Han Y, Wang Z, Feng L, Wang G, Yang B, Lei Y, Du W. 2023. Directly linking plant N, P and K nutrition to biomass production in cotton-based intercropping systems. European Journal of Agronomy151, 126960.

Salazar G. 2022. EcolUtils: utilities for community ecology analysis. R package version 0.1.

Shi S, Nuccio E E, Shi Z J, He Z, Zhou J, Firestone M K. 2016. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecology Letters19, 926–936.

Shu D, Banerjee S, Mao X, Zhang J, Cui W, Zhang W, Zhang B, Chen S, Jiao S, Wei G. 2024. Conversion of monocropping to intercropping promotes rhizosphere microbiome functionality and soil nitrogen cycling. Science of the Total Environment949, 174953.

Solanki M K, Wang Z, Wang F, Li C, Gupta C L, Singh R K, Malviya M K, Singh P, Yang L, Li Y. 2020. Assessment of diazotrophic Proteobacteria in sugarcane rhizosphere when intercropped with legumes (peanut and soybean) in the Field. Frontiers in Microbiology11, 1814.

Stegen J C, Lin X, Fredrickson J K, Chen X, Kennedy D W, Murray C J, Rockhold M L, Konopka A. 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal7, 2069–2079.

Vitousek P M, Menge D N L, Reed S C, Cleveland C C. 2013. Biological nitrogen fixation: Rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society (B: Biological Sciences), 368, 20130119.

Wahdan S F M, Ji L, Schädler M, Wu Y T, Sansupa C, Tanunchai B, Buscot F, Purahong W. 2023. Future climate conditions accelerate wheat straw decomposition alongside altered microbial community composition, assembly patterns, and interaction networks. The ISME Journal17, 238–251.

Wang J, Zou Y, Di Gioia D, Singh B K, Li Q. 2020. Conversion to agroforestry and monoculture plantation is detrimental to the soil carbon and nitrogen cycles and microbial communities of a rainforest. Soil Biology & Biochemistry147, 107849.

Wang Y, Li C, Tu B, Kou Y, Li X. 2021. Species pool and local ecological assembly processes shape the β-diversity of diazotrophs in grassland soils. Soil Biology & Biochemistry160, 108338.

Wen T, Xie P, Yang S, Niu G, Liu X, Ding Z, Xue C, Liu Y, Shen Q, Yuan J. 2022. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta1, e32.

Wolińska A, Kuźniar A, Zielenkiewicz U, Banach A, Błaszczyk M. 2018. Indicators of arable soils fatigue - Bacterial families and genera: A metagenomic approach. Ecological Indicators93, 490–500.

Wu Z, Han X, Chen X, Lu X, Yan J, Wang W, Zou W, Yan L. 2024. Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils. Journal of Integrative Agriculture23, 2065–2082.

Xiao Y, Li L, Zhang F. 2004. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant and Soil262, 45–54.

Xu Q, Vandenkoornhuyse P, Li L, Guo J, Zhu C, Guo S, Ling N, Shen Q. 2022. Microbial generalists and specialists differently contribute to the community diversity in farmland soils. Journal of Advanced Research40, 17–27.

Yang Y, Chai Y, Xie H, Zhang L, Zhang Z, Yang X, Hao S, Gai J, Chen Y. 2023. Responses of soil microbial diversity, network complexity and multifunctionality to three land-use changes. Science of the Total Environment859, 160255.

Zhang L, Yuan L, Wen Y, Zhang M, Huang S, Wang S, Zhao Y, Hao X, Li L, Gao Q, Wang Y. 2024. Maize functional requirements drive the selection of rhizobacteria under long-term fertilization practices. New Phytologist242, 1275–1288.

Zhang L, Zhang M, Huang S, Li L, Gao Q, Wang Y, Zhang S, Huang S, Yuan L, Wen Y, Liu K, Yu X, Li D, Zhang L, Xu X, Wei H, He P, Zhou W, Philippot L, Ai C. 2022. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications13, 3361.

Zhang S, Han Y, Wang G, Feng L, Lei Y, Xiong S, Yang B, Zhi X, Xin M, Jiao Y, Li X, Li Y, Jiao Z. 2025. Peanut–cotton intercropping to enhance soil ecosystem multifunctionality: Roles of microbial keystone taxa, assembly processes, and C-cycling profiles. AgricultureEcosystems & Environment377, 109254.

Zhang T, Liu Y, Ge S, Peng P, Tang H, Wang J. 2024. Sugarcane/soybean intercropping with reduced nitrogen addition enhances residue-derived labile soil organic carbon and microbial network complexity in the soil during straw decomposition. Journal of Integrative Agriculture23, 4216–4236.

Zhou G, Fan K, Li G, Gao S, Chang D, Liang T, Li S, Liang H, Zhang J, Che Z, Cao W. 2023. Synergistic effects of diazotrophs and arbuscular mycorrhizal fungi on soil biological nitrogen fixation after three decades of fertilization. iMeta2, e81.

Zhou J, Jiang X, Zhou B, Zhao B, Ma M, Guan D, Li J, Chen S, Cao F, Shen D, Qin J. 2016. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biology & Biochemistry95, 135–143.

[1] Yu Wang, Linying Xu, Liquan Zhang, Rui Zhang, Qiong Liu, Hongquan Liu, Tao Yang, Haoqing Zhang, Tida Ge, Li Wang. Effects of host niche and genotype on the diversity and community assembly of the fungal community in peas (Pisum sativum L.)[J]. >Journal of Integrative Agriculture, 2026, 25(2): 529-539.
[2] LIANG Hai, FU Li-bo, CHEN Hua, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1199-1215.
[3] LIU Rui, ZHOU Guo-peng, CHANG Dan-na, GAO Song-juan, HAN Mei, ZHANG Jiu-dong, SUN Xiao-feng, CAO Wei-dong. Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1177-1187.
[4] LI Gui-long, WU Meng, LI Peng-fa, WEI Shi-ping, LIU Jia, JIANG Chun-yu, LIU Ming, LI Zhong-pei. Assembly and co-occurrence patterns of rare and abundant bacterial sub-communities in rice rhizosphere soil under short-term nitrogen deep placement[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3299-3311.
No Suggested Reading articles found!