Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Underlying mechanisms of high carbon budget surplus in low-stubble rice ratooning in Southeast China

Qiaohong Fan1, Jingnan Zou1, Zhimin Lin1, Gui Chen1, Wu You2, Kai Su1#, Wenxiong Lin1#

1 Institute of Agroecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 Fujian Agricultural Ecological Environment and Energy Technology Extension Station, Fuzhou 350002, China

 Highlights 

1 Ratoon rice maintains higher carbon surplus than single/double-cropping systems.

2 Its greater daily yield and lower GHG emissions drive this advantage.

3 Key mechanism: photosynthates preferentially allocated to ratoon panicles over roots/soil.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

再生稻模式因低碳排放和高产特性在中国南方地区受到正受到广泛关注,然而其收支平衡状况及其潜在机制并不清楚。本研究通过2021-2022年在华东南地区-福州(北纬25°17′,东经119°18′开展田间试验,构建了三种水稻种植模式:再生稻模式(MC+RSR)、单季稻(LR1)和双季稻(ER+LR2)。采用密闭静态暗箱观测法、干物质测定、生命周期评价(Life Cycle Assessment, LCA)等方法,从作物产量、温室气体排放、碳氮足迹、资源利用效率、固碳能力和碳收支平衡等多维度评估再生稻模式“高固碳-低排放”的机制。结果表明2021~2022年不同再生稻模式的RSR日均产量较其头季稻MC和单季稻LR1提高28.21%~47.40%,再生稻(MC+RSR)模式较双季稻(ER+LR2)模式日均产量提高13.50%~27.76%。并认为造成这一差异的原因是其再生季稻RSR光合产物(包括NSC)向穗部器官分配高3.32%~6.85%和向地下部根器官和土壤部位分配量减低21.77%~43.51%。此外,日均全球增温趋势(GWP)数据显示,再生稻(MC+RSR)日均全球增温趋势(GWP)为16.44 kg CO2-eq ha-1,单季稻(LR1)日均GWP平均为24.99 kg CO2-eq ha-1,双季稻(ER+LR2)日均GWP平均为21.32 kg CO2-eq ha-1,再生稻模式日均GWP比单季稻和双季稻分别降低34.21%22.90%。同样地,再生稻日均GHGI比单季稻和双季稻分别降低62.28%28.96%。从碳氮足迹而言,再生稻模式日均碳氮足迹分别为34.54 kg CO2-eq ha-122.72 kg N-eq ha-1,单季稻模式为45.63 kg CO2-eq ha-124.49 kg N-eq ha-1,双季稻模式为43.38 kg CO2-eq ha-124.77 kg N-eq ha-1 再生稻日均碳、氮足迹比单季稻和双季稻分别降低24.30%7.23%20.38%8.30%。此外,三模式的碳收支盈余量,再生稻(MC+RSR)为22380.01 kg CO2-eq ha-1,单季稻(LR1)和 双季稻(ER+LR2)分别为 11228.5423772.15 kg CO2-eq ha-1。因此,再生稻模式(MC+RSR)资源利用效率比单季稻模式(LR1)和双季稻模式(ER+LR2)分别提高23.92%47.50%,同时,日均经济效益分别提高32.71%80.75%,该研究结果可为进一步探索农业碳中和技术和保障粮食安全的终极目标提供理论基础和实践依据。

 



Abstract  

The rice ratooning (RR) pattern is increasingly gaining attention in southern China due to its low carbon emissions and high yield characteristics.  However, the net carbon budget balance and the underlying mechanisms remain unknown.  Three rice planting patterns were established in this trial experiment conducted from 2021 to 2022 in Fuzhou (25°17′N, 119°18′E), Southeast China: the ratooning rice pattern (MC+RSR) for rice ratooning, single-cropping rice (LR1), and double-cropping rice (ER+LR2).  The closed static dark box gas collection, dry matter determination, Life Cycle Assessment (LCA) etc. approaches were utilized to investigate the mechanism of "high carbon fixation - low emissions" in the rice ratooning system.  This was achieved through a comprehensive evaluation across multiple dimensions, including crop yield, GHG emissions, carbon and nitrogen footprints, resource utilization efficiency, carbon fixation capacity, and carbon budget balance.  The results showed that the average daily yield of the ratooning season rice (RSR) across different RR patterns from 2021 to 2022 was 28.21 to 47.40% higher than that of the main crop (MC) and single-cropping rice (LR1), and 13.50 to 27.76% higher than that of the double cropping system. This discrepancy was attributed to a 3.32-6.85% increase in the allocation of 13C photosynthetic products (including NSC) to panicle organs and a 21.77-43.51% reduction in allocation to underground roots and soil of RSR.  Moreover, the average daily GWP values are 16.44 kg CO2-eq ha⁻1 for ratoon rice (MC+RSR), 24.99 kg CO2-eq ha⁻1 for single-cropping rice (LR1), and 21.32 kg CO2-eq ha⁻1 for double-cropping rice (ER+LR2).  Specifically, the average daily GWP of ratoon rice is 34.21% lower than that of single-cropping rice and 22.90% lower than that of double-cropping rice.  Similarly, the average daily GHGI of ratoon rice is 62.28% lower than that of single-cropping rice and 28.96% lower than that of double-cropping rice.  In terms of carbon and nitrogen footprints, the ratoon rice model exhibited average daily values of 34.54 kg CO2-eq ha-1 and 22.72 kg N-eq ha-1, respectively.  In comparison, the single-cropping rice model had average daily values of 45.63 kg CO2-eq ha-1 and 24.49 kg N-eq ha-1, while the double-cropping rice model showed averages of 43.38 kg CO2-eq ha-1 and 24.77 kg N-eq ha-1, indicating the reductions of 24.30 and 7.23% in carbon and nitrogen footprints compared to the single-cropping rice model, as well as reductions of 20.38 and 8.30% relative to the double-cropping rice system.  Furthermore, the average carbon budget surplus across the three cropping systems is as follows: 22,380.01 kg CO2-eq ha-1 for ratoon rice (MC+RSR), 11,228.54 kg CO2-eq ha-1 for single-cropping rice (LR1), and 23,772.15 kg CO2-eq ha-1 for double-cropping rice (ER+LR2).  Therefore, the resource utilization efficiency of the ratoon rice model (MC+RSR) was 23.92 and 47.50% higher than that of the single-cropping rice model (LR1) and the double-cropping rice model (ER+LR2), respectively.  Furthermore, the average daily economic benefits increased by 32.71 and 80.75%, respectively.  These findings provide a robust theoretical foundation and practical guidance for advancing agricultural carbon neutrality technologies and ensuring food security.

Keywords:  carbon budget balance       carbon fixation and emission mitigation       carbon and nitrogen footprints       ratooning rice       single cropping rice       double cropping rice  
Online: 07 July 2025  
Fund: 
This research was supported by the National Key Research Project of Science and Technology, China (2016yfd30300508, 2017YFD0301602, and 2018yfd0301105) and the Science and Technology Development Fund Project of Fujian Agriculture and Forestry University, China (kf2015043).
About author:  #Correspondence Kai Su, E-mail: fjsk1311@fafu.edu.cn; Wenxiong Lin, E-mail: wenxiong181@163.com

Cite this article: 

Qiaohong Fan, Jingnan Zou, Zhimin Lin, Gui Chen, Wu You, Kai Su, Wenxiong Lin. 2025. Underlying mechanisms of high carbon budget surplus in low-stubble rice ratooning in Southeast China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.012

Chen H, Yao F, Yang Y, Zhang Z, Fang C, Chen T, Lin W. 2023. Progress and challenges of rice ratooning technology in Fujian Province, China. Crop and Environment2, 121–125.

Chen S, Liu T, Cao C, Ling L, Wang B. 2021. Situation of carbon neutrality in rice production and techniques for low-carbon rice farming. Journal of Huazhong Agricultural University40, 3–12. (in Chinese) 

Chen S, Zhao Q, Chen H, Jin H. 2019. Genome-wide identification and expression analysis of sucrose synthase family in maize. Southwest China Journal of Agricultural Sciences32, 2479–2485. (in Chinese) 

Chen T, Weng P, Lan C, Nyumah F, Guo C, Zhang Z, Lin W F, Chen H, Lin W. 2024. Studies and prospectives of mechanically harvested ratooning rice in China. Technology in Agronomy4, e015.

Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, et al. 2018. Pursuing sustainable productivity with millions of smallholder farmers. Nature555, 363–366.

Ceschia E, Béziat P, Dejoux J F, Aubinet M, Bernhofer C, Bodson B, Buchmann N, Carrara A, Cellier P, Tommasi P D, Elbers J A, Eugster W, Grünwald T, Jacobs C M J, Jans W W P, Jones M, Kutsch W, Lanigan G, Magliulo E, Marloie O, et al. 2010. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, Ecosystems & Environment, 139, 363–383.

Deng S. 2024. Investigation and analysis on the current status of ratoon rice production. Msc thesis, Huazhong Agricultural University, China. (in Chinese)

Fang F, Cheng S. 2018. Rice technology and industrial development. Acta Agronomica Sinica, 8, 92–98. (in Chinese)

Hu J, Bettembourg M, Xue L, Hu R, Schnürer A, Sun C, Jin Y, Sundström J F. 2024. A low-methane rice with high-yield potential realized via optimized carbon partitioning. Science of the Total Environment, 920, 170980.

Huang J, Pan Y, Chen H, Zhang Z, Fang C, Shao C, Amjad H, Lin W. 2020. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Research258, 107962.

Huang J, Yu X, Zhang Z, Peng S, Liu B, Tao X, He A, Deng N, Zhou Y, Cui K, Wang F, Huang J L. 2022. Exploration of feasible rice-based crop rotation systems to coordinate productivity, resource use efficiency and carbon footprint in Central China. European Journal of Agronomy141, 126633.

Huang W, Wu J, Pan X, Tan X, Zeng Y, Shi Q, Liu T, Zeng Y. 2021. Effects of long-term straw return on soil organic carbon fractions and enzyme activities in a double-cropped rice paddy in South China. Journal of Integrative Agriculture, 20, 236–247.

IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Jiang Y, Guan D, Zhang W. 2018. The effect of rice plant traits on methane emissions from paddy fields: A review. Chinese Journal of Eco-Agriculture26, 175–181. (in Chinese) 

Jiang Y, Zhu X, Qian H, Zhang N, Ding Y. 2022. Higher rice yields and lower methane emissions can be reconciled for rice cultivation: A review. Journal of Nanjing Agricultural University45, 839–847. (in Chinese)

Kwon Y, Lee J Y, Choi J, Lee S M, Kim D, Cha J K, Park H, Kang J W, Kim T H, Chae H G, Kabange N R, Oh K W, Kim P J, Kwak Y S, Lee J H, Ryu C M. 2023. Loss-of-function gs3 allele decreases methane emissions and increases grain yield in rice. Nature Climate Change, 13, 1329–1333.

Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623–1627.

Li J, Qin B, Lan C, Xu H, Zou J, Zhang B, Fang C, Zhang Z, Chen H, Lin W. 2025. Rhizosphere microecological mechanism of carbon sequestration and its emission mitigation in rice ratooning. Agriculture, Ecosystems & Environment381, 109406.

Li P, Liu J, Saleem M, Li G, Luan L, Wu M, Li Z. 2022. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems. Microbiome10, 1–15.

Li R, Tian Y, Wang F, Sun Y, Lin B, Dang Y P, Zhao X, Zhang H, Xu Z. 2024. Optimizing the rate of straw returning to balance trade-offs between carbon emission budget and rice yield in China. Sustainable Production and Consumption47, 166–177.

Li Y, Zheng W, Xiao X, Huang T, Xiao F, Lu W, Han D, Liu X, Chen M, Dai X, Wang R, Liu K, Xiao G. 2021. Effects of mechanical harvesting stubble heights on grain yield of ratoon rice under the triple-cropping system of rape-rice-ratoon rice in the area of red soil paddy of northcentral Jiangxi. Hybrid Rice36, 87–92. (in Chinese)

Lin F, Rensing C, Pang Z, Zou J, Lin S, Letuma P, Zhang Z, Lin W. 2022. Metabolomic analysis reveals differential metabolites and pathways involved in grain chalkiness improvement under rice ratooning. Field Crops Research283, 108521. 

Lin Q, Cai Q, Cui L, Jiang Z, Jiang J, Wu F, Luo X, Xiao Y, Xie H, Zhang J. 2022. Research progress on screening and breeding of ratoon rice varieties. China Rice28, 1–6. (in Chinese)

Lin Q, Zheng C, Lin Q, Zhu Y, Wang Y, Jiang J, Jiang Z, Zhang J, 2021. Relationships of panicle to stem ratio with yield and its components of ratoon rice. Journal of Northwest A&F University (Nat. Sci. Ed.)49, 65–74. (in Chinese)

Lin W. 2019. Developmental status and problems of rice ratooning. Journal of Integrative Agriculture18, 246–247.

Lin W, Chen H, Zhang Z, Xu Q, Mei T N, Fang C, Ren W. 2015. Research and prospect of physiological and ecological characteristics of ratoon rice yield formation and key cultivation techniques. Chinese Journal of Eco-Agriculture23, 392–401. (in Chinese) 

Lin W, Weng P, Lin W F, Shao C, Guo C, Chen H, Chen T. 2024. Research status and prospect of ratoon rice in China under mechanically harvested condition. Chinese Journal of Applied Ecology35, 827–836. (in Chinese)

Lin Z, Li Z, Wen P, Wu D, Zou J, Pang Z, Lin W. 2022. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice. Chinese Journal of Applied Ecology33, 1340–1351. (in Chinese)

Ling X, Zhang T, Deng N, Yuan S, Yuan G, He W, Cui K, Nie L, Peng S, Li T, Huang J. 2019. Modelling rice growth and grain yield in rice ratooning production system. Field Crops Research241, 107574.

Liu J. 2019. Effects of high temperature on grain starch size distribution, sucrose degradation, and storage protein accumulation metabolism in rice (Oryza sativa L.). MSc thesis, Zhejiang University, Cnina(in Chinese)

Tang J, Liu T, Yang J, Nie J, Xing J, Zhang L, Zhang W, Tan W, Cao C. 2022. Current status of carbon neutrality in Chinese rice fields (2002-2017) and strategies for its achievement. The Science of the Total Environment842, 156713.

Mandal U K, Bhardwaj A K, Lama T D, Nayak D B, Burman D, Samui A, Mahanta K K, Sarangi S K, Mandal S, Raut S. 2021. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil and Tillage Research212, 105076.

Nakano H, Tanaka R, Nakagomi K, Hakata M. 2021. Grain yield response to stubble leaf blade clipping in rice ratooning in southwestern Japan. Agronomy Journal113, 4013–4021.

Qian H, Yuan Z, Chen N, Zhu X, Huang S, Lu C, Liu K, Zhou F, Smith P, Tian H, Xu Q, Zou J, Liu S, Song Z, Zhang W, Wang S, Liu Z, Li G, Shang Z, Ding Y, et al. 2025. Legacy effects cause systematic underestimation of N2O emission factors. Nature Communications16, 2775.

Qian H, Zhu X, Huang S, Linquist B, Kuzyakov Y, Wassmann R, Minamikawa K, Martinez-Eixarch M, Yan X, Zhou F, Sander B O, Zhang W, Shang Z, Zou J, Zheng X, Li G, Liu Z, Wang S, Ding Y, van Groenigen K J, et al. 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment4, 716–732.

Qu X, Ren Y, Wang H, Zhang J, Xie Y. 2020. Report on the changes in the main characteristics of cultivated land quality in China over the past 30 years. China Comprehensive Agricultural Development5, 25–26. (in Chinese)

Ren X, Cui K, Deng Z, Han K, Peng Y, Zhou J, Zhai Z, Huang J, Peng S. 2023. Ratoon rice cropping mitigates the greenhouse effect by reducing CH4 emissions through reduction of biomass during the ratoon season. Plants12, 3354.

Shi W, Zhu G, Sun M, Wang A, Chen Z, Yan G. 2020. Influence factors and mechanism of rice grain filling: Research progress. Chinese Agricultural Science Bulletin36, 1–7. (in Chinese)

Smith P, Lanigan G, Kutsch W L, Buchmann N, Eugster W, Aubinet M, Ceschia E, Béziat P, Yeluripati J B, Osborne B, Moors E J, Brut A, Wattenbach M, Saunders M, Jones M. 2010. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment139, 302–315.

Song K, Zhang G, Yu H, Xu H, Lv S, Ma J. 2021. Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China. European Journal of Soil Science72, 1478–1491.

Su J, Hu C, Yan X, Jin Y, Chen Z, Guan Q, Wang Y, Zhong D, Jansson C, Wang F, Schnürer A, Sun C. 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 523, 602–606.

Wei J, Xu H, Zhou L, Cheng X, Tang X, Fu Z, Tang Q, Tang J. 2018. Seasonal variation in carbon exchange and its modulating factors of a double cropping rice ecosystem in Southern China. Journal of Agro-Environment Science, 37, 1035–1044. (in Chinese)

Wang F, Peng S. 2018. Research progress in rice green and high-yield management practices. Chinese Bulletin of Life Sciences30, 1129–1136. (in Chinese) 

Wang W, He A, Jiang G, Sun H, Jiang M, Man J, Nie L. 2020. Ratoon rice technology: A green and resource-efficient way for rice production. Advances in Agronomy159, 135–167.

Wang Y. 2021. Effects of nitrogen management on yield formation of ratoon rice and the related mechanism. Ph D thesie, Huazhong Agricultural University, China(in Chinese) 

Xu C, Ji L, Chen Z, Fang F. 2018. Trends of green development of rice production in China. Chinese Bulletin of Life Sciences30, 1146–1154. (in Chinese) 

Xu F, Xiong H, Zhang L, Zhu Y, Jiang P, Guo X, Liu M. 2015. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Scientia Agricultura Sinica48, 1702–1717. (in Chinese)

Xu Y, Liang L, Wang B, Xiang J, Gao M, Fu Z, Long P, Luo H, Huang C. 2022. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Science of the Total Environment813, 152550.

Yang D, Peng S, Qi M, Xiong Z, Deng S, Wang F. 2023. Comparison of grain cadmium and arsenic concentration between main and ratoon crop in rice ratooning system. Food Chemistry, 399, 134017.

Yao L, Lai Y, Zhao M. 2024. Paths to enhance farmers’ income by agricultural carbon trading. Journal of Huazhong Agricultural University43, 9–16. (in Chinese) 

Yoshida S, Forno D A, Cock J H. 1971. Laboratory Manual for Physiological Studies of Rice. International Rice Research Institute, Los Baños, Laguna.

Yu J, Kees Jan V G, Shan H, Bruce A H, Chris V K, Hu S, Zhang J, Wu L, Yan X, Wang L, Chen J, Hang X, Zhang Y, Horwath W R, Ye R, Linquist B A, Song Z, Zheng C, Deng A, Zhang W. 2017. Higher yields and lower methane emissions with new rice cultivars. Global Change Biology23, 4728–4738.

Yu X, Xu L, Yuan S, Yang G, Xiang H, Fu Y, Huang J, Peng S. 2023. Resource use efficiencies, environmental footprints and net ecosystem economic benefit of direct-seeded double-season rice in Central China. Journal of Cleaner Production393, 136249.

Yu X, Yuan S, Tao X, Huang J, Yang G, Deng Z, Xu L, Zheng C, Peng S. 2021. Comparisons between main and ratoon crops in resource use efficiencies, environmental impacts, and economic profits of rice ratooning system in central China. Science of the Total Environment799, 149246.

Yuan S, Cassman K G, Huang J, Peng S, Patricio G. 2019. Can ratoon cropping improve resource use efficiencies and profitability of rice in Central China? Field Crops Research234, 66–72.

Yuan S, Yang C, Yu X, Zheng C, Xiao S, Xu L, Cui K, Huang J, Peng S. 2022. On-farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China. Journal of the Science of Food and Agriculture102, 7259–7267.

Zhang H, Hu Y, Yang J, Dai Q, Huo Z, Xu K, Wei H, Gao H, Guo B, Xing Z, Hu Q. 2021. Development and prospect of rice cultivation with Chinese characteristics. Chinese Agricultural Science54, 1301–1321. (in Chinese)

Zhang W, Shang Z, Zhang J, Yan S, Deng A, Zhang X, Zheng C, Song Z. 2023. Standardized establishment and improvement of accounting system of agriculture greenhouse gas emission. Scientia Agricultura Sinica56, 4467–4477. (in Chinese)

Zhao F, Yang P, Gao Q, Xia L, Fan L, Hu M. 2024. Effects of the long-term rice expansion on ecosystem carbon budget in the typical agricultural area of Northeast China. Sustainable Production and Consumption52, 613–623.

Zou J, Pang Z, Li Z, Guo C, Lin H, Li Zheng, Chen H, Huang J, Chen T, Xu H, Qin B, Letuma P, Lin W W, Lin W. 2024. The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting. Journal of Integrative Agriculture23, 806–823. 

[1] GUAN Xian-jiao, CHEN Jin, CHEN Xian-mao, XIE Jiang, DENG Guo-qiang, HU Li-zhen, LI Yao, QIAN Yin-fei, QIU Cai-fei, PENG Chun-rui. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1278-1289.
[2] CHENG Yong-xiang, HUANG Jing-feng, HAN Zhong-ling, GUO Jian-ping, ZHAO Yan-xia, WANG Xiu-zhen , GUO Rui-fang. Cold Damage Risk Assessment of Double Cropping Rice in Hunan, China[J]. >Journal of Integrative Agriculture, 2013, 12(2): 352-363.
No Suggested Reading articles found!