Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (11): 1845-1851    DOI: 10.1016/S1671-2927(00)8719
PLANT PROTECTION Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative Analysis of Cry1Ac Toxin Oligomerization and Pore Formation Between Bt-Susceptible and Bt-Resistant Helicoverpa armigera Larvae
 LI Yi-ping, WUJun-xiang, LIU Chen-xi, YUAN Xiang-qun, WU Kong-ming, LIANG Ge-mei, GUO Yu-yuan
1.Key Laboratory of Applied Entomology; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education/College of Plant Protection, Northwest Agriculture and Forestry University, Yangling 712100, P.R.China
2.State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  With the long-term use of Bacillus thuringiensis (Bt) insecticide and expansion of Cry1A-expressing transgenic plants, some insect pests have developed resistance to Bt in open fields, greenhouses, and in the laboratory. Bt resistance is complex and there appear to be different ways for resistance development. Understanding the Bt resistance mechanisms is critical to prolong its usefulness. In this article, Bt receptors, the cadherin and aminopeptidase N (APN), in brush border membrane vesicles (BBMV) of Helicoverpa armigera were examined in both Cry1Ac-susceptible (96S) and Cry1Acresistant (LF120) strains, to compare Cry1Ac toxin oligomerization and pore formation in these two strains. Cry1Ac toxin oligomerization and pore formation in these two strains were compared. Results showed that cadherin and aminopeptidase N proteins could express normally in both susceptible and resistant H. armigera strains. The ability to form Cry1Ac oligomers and ion channels on BBMVs was also not significantly different between these two strains.

Abstract  With the long-term use of Bacillus thuringiensis (Bt) insecticide and expansion of Cry1A-expressing transgenic plants, some insect pests have developed resistance to Bt in open fields, greenhouses, and in the laboratory. Bt resistance is complex and there appear to be different ways for resistance development. Understanding the Bt resistance mechanisms is critical to prolong its usefulness. In this article, Bt receptors, the cadherin and aminopeptidase N (APN), in brush border membrane vesicles (BBMV) of Helicoverpa armigera were examined in both Cry1Ac-susceptible (96S) and Cry1Acresistant (LF120) strains, to compare Cry1Ac toxin oligomerization and pore formation in these two strains. Cry1Ac toxin oligomerization and pore formation in these two strains were compared. Results showed that cadherin and aminopeptidase N proteins could express normally in both susceptible and resistant H. armigera strains. The ability to form Cry1Ac oligomers and ion channels on BBMVs was also not significantly different between these two strains.
Keywords:  Helicoverpa armigera       Bt resistance       oligomerization       pore formation  
Received: 17 October 2011   Accepted:
Fund: 

This research was supported by the National Basic Research Program of China (31071693).

Corresponding Authors:  Correspondence GUO Yu-yuan, Tel/Fax: +86-10-62894786, E-mail: yuyuanguo@hotmail.com;LIANG Ge-mei, Tel: +86-10-62815929, E-mail: gmliang@ippcaas.cn     E-mail:  yuyuanguo@hotmail.com
About author:  LI Yi-ping, Mobile: 13759967722, E-mail: liyiping@nwsuaf.edu.cn

Cite this article: 

LI Yi-ping, WUJun-xiang , LIU Chen-xi, YUAN Xiang-qun, WU Kong-ming, LIANG Ge-mei, GUO Yu-yuan. 2012. Comparative Analysis of Cry1Ac Toxin Oligomerization and Pore Formation Between Bt-Susceptible and Bt-Resistant Helicoverpa armigera Larvae. Journal of Integrative Agriculture, 12(11): 1845-1851.

[1]Akhurst R J, James W, Bird L J, Beard C. 2003. Resistanceto the Cry1Ac delt a -endotoxin of Baci l lusthuringiensis in the cotton bollworm, Helicoverpaarmigera (Lepidoptera: Noctuidae). Journal ofEconomic Entomology, 96, 1290-1299

[2]Arenas I, BravoA, SoberónM, Gómez I 2010. Role of alkalinephosphatase from Manduca sexta in the mechanism ofaction of Bacillus thuringiensis Cry1Ab toxin. Journalof Biological Chemistry, 285, 12497-12503

[3]Baxter S W, Badenes-Pérez F R, Morrison A, Vogel H,Crickmore N, Kain W, Wang P, Heckel D G, Jiggins C D.2011. Parallel evolution of Bt toxin resistance inlepidoptera. Genetics, doi: 10.1534/genetics, 111.130971Bravo A, Gill S S, Soberon M. 2007. Mode of action ofBacillus thuringiensis Cry and Cyt toxins and theirpotential for insect control. Toxicon, 49, 423-435

[4]Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J,Miranda R, Zhuang M, Gill S S, Soberon M. 2004.Oligomerization triggers binding of a Bacillusthuringiensis Cry1Ab pore-forming toxin toaminopeptidase N receptor leading to insertion intomembrane microdomains. Biochimica et BiophysicaActa, 1667, 38-46

[5]Bravo A, Likitvivatanavong S, Gill S S, Soberón M. 2011.Bacillus thuringiensis: a story of a successfulbioinsecticide. Insect Biochemistry and MolecularBiology, 41, 423-431

[6]Ferré J, van Rie J. 2002. Biochemistry and genetics of insectresistance to Bacillus thuringiensis. Annual Reviewof Entomology, 47, 501-533

[7]Gahan L J, Gould F, Heckel D G. 2001. Identification of agene associated with Bt resistance in Heliothisvirescens. Science, 293, 857-860

[8]Gahan L J, Pauchet Y, Vogel H, Heckel D G. 2010. An ABCtransporter mutation is correlated with insect resistanceto Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics,6, e1001248.Gill S S, Cowles E A, Francis V. 1995. Identification,isolation, and cloning of a Bacillus thuringiensisCry1Ac toxin-binding protein from the midgut of thelepidopteran insect Heliothis virescens. Journal ofBiological Chemistry, 270, 27277-27282

[9]Giordana B, Sacchi V F, Hanozet GM. 1982. Intestinal aminoacid absorption in lepidopteran larvae. Biochimica etBiophysica Acta, 692, 81-88

[10]Gómez I, Sanchez J, Miranda R, Bravo A, Soberón M. 2002.Cadherin-like receptor binding facilitates proteolyticcleavage of helix alpha-1 in domain I and oligomer preporeformation of Bacillus thuringiensis Cry1Ab toxin FEBS Letters, 513, 242-246

[11]Heckel D G, Gahan L J, Baxter S W, Zhao J Z, Shelton A M,Gould F, Tabashnik B E. 2007. The diversity of Btresistance genes in species of Lepidoptera. Journal ofInvertebrate Pathology, 95, 192-197

[12]Herrero S, Gechev T, Bakker P L, MoarW J, de Maagd R A.2005. Bacillus thuringiensis Cry1Ca-resistantSpodoptera exigua lacks expression of one of fourAminopeptidase N genes. BMC Genomics, 6, 96.

[13]Holland I B, Cole S P C, Kuchler K, Higgins C F. 2003. ABCProteins: From bacteria to Man. Academic Press,London, UK.Janmaat A F, Myers J. 2003. Rapid evolution and the costof resistance to Bacillus thuringiensis in greenhousepopulations of cabbage loopers, Trichoplusia ni.Proceedings of the Royal Society, B: BiologicalSciences, 270, 2263-2270

[14]Jiménez-Juárez N, Muòoz-Garay C, Gómez I, Gill S S,Soberón M, Bravo A. 2008. The pre-pore from Bacillusthuringiensis Cry1Ab toxin is necessary to induceinsect death in Manduca sexta. Peptides, 29, 318-323

[15]Jurat-Fuentes J L, Adang M J. 2004. Characterization of aCry1Ac-receptor alkaline phosphatase in susceptibleand resistant Heliothis virescens larvae. EuropeanJournal of Biochemistry, 271, 3127-3135

[16]Jurat-Fuentes J L, Adang M J. 2007. A proteomic approachto study Cry1Ac binding proteins and their alterationsin resistant Heliothis virescens larvae. Journal ofInvertebrate Pathology, 95, 187-191

[17]Jurat-Fuentes J L, Gould F L, Adang M J. 2002. Alteredglycosylation of 63- and 68-Kilodalton microvillarproteins in Heliothis virescens correlates with reducedCry1 toxin binding, decreased pore formation, andincreased resistance to Bacillus thuringiensis Cry1toxins. Applied and Environmental Microbiology, 68,5711-5717

[18]Jurat-Fuentes J L, Gahan L J, Gould F L, Heckel D G,Adang MJ. 2004. The HevCaLP protein mediates binding specificityof the Cry1A class of Bacillus thuringiensis toxins inHeliothis virescens. Biochemistry, 43, 14299-14305

[19]Jurat-Fuentes J L, Karumbaiah L, Jakka S R, Ning C, Liu C,Wu K, Jackson J, Gould F, Blanco C, Portilla M, et al.2011. Reduced levels of membrane-bound alkalinephosphatase are common to lepidopteran strainsresistant to Cry toxins from Bacillus thuringiensis.PLoS One, 6, e17606.Karumbaiah L, Oppert B, Jurat-Fuentes J L, Adang M J.2007. Analysis of midgut proteinases from Bacillusthuringiensis-susceptible and -resistant Heliothisvirescens (Lepidoptera: Noctuidae). ComparativeBiochemistry and Physiology (Part B), 146, 139-146

[20]Kranthi K R, Dhawad C S, Naidu S R, Mate K, Behere G T,Wadaskar RM, Kranthi S. 2006. Inheritance of resistancein Indian Helicoverpa armigera (Hübner) to Cry1Actoxin of Bacillus thuringiensis. Crop Protection, 25,119-124

[21]Labbé R, Caveney S, Donly C. 2011. Genetic analysis of thexenobiotic resistance associated ABC gene subfamilies ofthe Lepidoptera. Insect Molecular Biology, 20, 243-256

[22]Liang G, Wu K, Yu H, Li K, Feng X, Guo Y. 2008. Changesof inheritance mode and fitness in Helicoverpaarmigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. Journal ofInvertebrate Pathology, 97, 142-149

[23]Liu C, Gao Y, Ning C, Wu K, Oppert B, Guo Y. 2010a.Antisera-mediated in vivo reduction of Cry1Ac toxicityin Helicoverpa armigera. Journal of Insect Physiology,56, 718-724

[24]Liu C, Li Y, Gao Y, Ning C, Wu K. 2010b. Cotton bollwormresistance to Bt transgenic cotton: a case analysis.Science China Life Sciences, 53, 934-941

[25]Liu S, Zhou S, Tian L, Guo E, Luan Y, Zhang J, Li S. 2011.Genome-wide identification and characterization of ATPbindingcassette transporters in the silkworm, Bombyxmori. BMC Genomics, 12, 491.Lorence A, Darszon A, Bravo A. 1997. Aminopeptidasedependent pore formation of Bacillus thuringiensisCry1Ac toxin on Trichoplusia ni membranes. FEBSLetters, 414, 303-307

[26]Luo S, Wang G, Liang G, Wu K, Bai L, Ren X, Guo Y. 2006.Binding of three Cry1A toxins in resistant and susceptiblestrains of cotton bollworm (Helicoverpa armigera).Pesticide Biochemistry and Physiology, 85, 104-109

[27]Morin S, Biggs RW, Sisterson M S, Shriver L, Ellers-Kirk C,Higginson D, Holley D, Gahan L J, Heckel D G, CarriereY, et al. 2003. Three cadherin alleles associated withresistance to Bacillus thuringiensis in pink bollworm.Proceedings of the National Academy of Sciences ofthe United States of America, 100, 5004-5009

[28]Ning C, Wu K, Liu C, Gao Y, Jurat-Fuentes J L, Gao X. 2010.Characterization of a Cry1Ac toxin-binding alkalinephosphatase in the midgut from Helicoverpa armigera(Hübner) larvae. Journal of Insect Physiology, 56, 666-672

[29]Oppert B, Kramer K J, Beeman R W, Johnson D,McGaughey W H. 1997. Proteinase-mediated insectresistance to Bacillus thuringiensis toxins. Journal ofBiological Chemistry, 272, 23473-23476

[30]Pacheco S, Gómez I, Gill S S, Bravo A, Soberón M. 2009.Enhancement of insecticidal activity of Bacillusthuringiensis Cry1A toxins by fragments of a toxinbindingcadherin correlates with oligomer formation.Peptides, 30, 583-588

[31]Rodríguez-Almazán C, Zavala L E, Muñoz-Garay C, Jiménez-Juárez N, Pacheco S, Masson L, Soberón M, Bravo A.2009. Dominant negative mutants of Bacillusthuringiensis Cry1Ab toxin function as anti-toxins:demonstration of the role of oligomerization in toxicity.PLoS One, 4, e5545.Rodrigo-Simon A, Caccia S, Ferré J. 2008. Bacillusthuringiensis Cry1Ac toxin-binding and pore-formingactivity in brush border membrane vesicles preparedfrom anterior and posterior midgut regions oflepidopteran larvae. Applied and EnvironmentalMicrobiology, 74, 1710-1716

[32]Roh J Y, Choi J Y, Li M S, Jin B R, Je Y H. 2007. Bacillusthuringiensis as a specific, safe, and effective tool forinsect pest control. Journal of Microbiology andBiotechnology, 17, 547-559

[33]Schnepf E,CrickmoreN, van Rie J, LereclusD, BaumJ, FeitelsonJ, Zeigler D R, Dean D H. 1998. Bacillus thuringiensis andits pesticidal crystal proteins. Microbiology andMolecular Biology Reviews, 62, 775-806

[34]Soberón M, Pardo-Lopez L, Lopez I, Gomez I, Tabashnik BE, Bravo A. 2007. Engineering modified Bt toxins tocounter insect resistance. Science, 318, 1640-1642

[35]Tabashnik B E. 1990. Implications of gene amplification forevolution and management of insecticide resistance.Journal of Economic Entomology, 83, 1170-1176

[36]Tiewsiri K, Wang P. 2011. Differential alteration of twoaminopeptidases N associated with resistance toBacillus thuringiensis toxin Cry1Ac in cabbage looper.Proceedings of the National Academy of Sciences ofthe Unites States of America, 108, 14037-14042

[37]Tojo A, Aizawa K. 1983. Dissolution and degradation ofBacillus thuringiensis ?-endotoxin by gut juice proteaseof the si lkworm Bombyx mor i. Appl ied andEnvironmental Microbiology, 45, 576-580

[38]Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi FV, Giordana B, Hanozet G M. 1987. Preparation andpartial characterization of amino acid transporting brushborder membrane vesicles from the larval midgut of thecabbage butterfly (Pieris brassicae). ComparativeBiochemistry and Physiology (Part A), 86, 301-308

[39]Xu X, Yu L, Wu Y. 2005. Disruption of a cadherin geneassociated with resistance to Cry1Ac {delta}-endotoxinof Bacillus thuringiensis in Helicoverpa armigera.Applied and Environmental Microbiology, 71, 948-954

[40]Zhang S, Cheng H, Gao Y, Wang G, Liang G, Wu K. 2009.Mutation of an aminopeptidase N gene is associatedwith Helicoverpa armigera resistance to Bacillusthuringiensis Cry1Ac toxin. Insect Biochemistry andMolecular Biology, 39, 421-429

[41]Zhang X, Candas M, Griko N B, Rose-Young L, Bulla Jr LA.2005. Cytotoxicity of Bacillus thuringiensis Cry1Abtoxin depends on specific binding of the toxin to thecadherin receptor BT-R1 expressed in insect cells. CellDeath and Differentiation, 12, 1407-1416

[42]Zhang X, Candas M, Griko N B, Taussig R, Bulla Jr LA.2006. A mechanism of cell death involving an adenylylcyclase/PKA signaling pathway is induced by theCry1Ab toxin of Bacillus thuringiensis. Proceedingsof the National Academy of Sciences of the UnitedStates of America, 103, 9897-9902

[43]ZhangX, GrikoNB, Corona S K, Bulla Jr LA. 2008. Enhancedexocytosis of the receptor BT-R1 induced by Cry1Abtoxin of Bacillus thuringiensis directly correlates tothe execution of cell death. Comparative Biochemistryand Physiology (Part B), 149, 581-588

[44]Zhuang M, Oltean D I, Gomez I, Pullikuth A K, Soberon M,BravoA, Gill S S. 2002. Heliothis virescens and Manducasexta lipid rafts are involved in Cry1A toxin binding tothe midgut epithelium and subsequent pore formation.Journal of Biological Chemistry, 277, 13863-13872
[1] ZHANG Xiao-shuai, SU Xiao-long, GENG Shao-lei, WANG Zheng-hao. Physiological mitochondrial ROS regulate diapause by enhancing HSP60/Lon complex stability in Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1703-1712.
[2] LIU Ying-jie, ZHANG Dan-dan, YANG Li-yu, DONG Yong-hao, LIANG Ge-mei, Philip DONKERSLEY, REN Guang-wei, XU Peng-jun, WU Kong-ming . Analysis of phototactic responses in Spodoptera frugiperda using Helicoverpa armigera as control[J]. >Journal of Integrative Agriculture, 2021, 20(3): 821-828.
[3] ZHAO Xiao-fan. Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1417-1428.
[4] LIU Yu-xiao, ZHOU Zi-shan, LIANG Ge-mei, SONG Fu-ping, ZHANG Jie. Alanine-substituted mutant on Gly373 and Asn375 of Cry1Ai-h-loop 2 causes reduction in both toxicity and binding against Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1064-1071.
[5] ZHANG Li-li, LIANG Ge-mei, GAO Xi-wu, CAO Guang-chun, GUO Yu-yuan. Characterization and functional analysis of β-1,3-galactosyltransferase involved in Cry1Ac resistance from Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(2): 337-346.
[6] ZHANG Qian, CHEN Li-zhen, LU Qiong, ZHANG Yan, LIANG Ge-mei. Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3A in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2015, 14(2): 347-354.
[7] SHA Pin-jie, FAN Yin-jun, WANG Zhi-chao, SHI Xue-yan. Response dynamics of three defense related enzymes in cotton leaves to the interactive stress of Helicoverpa armigera (Hübner) herbivory and omethoate application[J]. >Journal of Integrative Agriculture, 2015, 14(2): 355-364.
[8] YANG Jing , HAN Zhao-jun. Efficiency of Different Methods for dsRNA Delivery in Cotton Bollworm (Helicoverpa armigera)[J]. >Journal of Integrative Agriculture, 2014, 13(1): 115-123.
[9] ZHANG Tian-tao, WANG Wei-xuan, ZHANG Zi-ding, ZHANG Yong-jun , GUO Yu-yuan. Functional Characteristics of a Novel Chemosensory Protein in the Cotton Bollworm Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2013, 12(5): 853-861.
[10] WU Shao-ying, SHI Xue-yan, WANG Yi , GAO Xi-wu. Response of Cytochrome P450 Expression to Maize Volatiles in Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2013, 12(4): 646-652.
[11] ZHANG Rui-min, DONG Jun-feng, CHEN Jia-hua, JI Qing-e , CUI Jin-jie. The Sublethal Effects of Chlorantraniliprole on Helicoverpa armigera (Lepidoptera: Noctuidae)[J]. >Journal of Integrative Agriculture, 2013, 12(3): 457-466.
[12] ZHANG Tian-tao, WANG Wei-xuan, ZHANG Zi-ding, ZHANG Yongjun, GUO Yu-yuan, . Structure, Binding Characteristics, and 3D Model Prediction of a Newly Identified Odorant-Binding Protein from the Cotton Bollworm, Helicoverpa armigera (Hübner)[J]. >Journal of Integrative Agriculture, 2012, 12(3): 430-438.
No Suggested Reading articles found!