Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (9): 1391-1398    DOI: 10.1016/S1671-2927(00)8670
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Using the Phosphomannose Isomerase (PMI) Gene from Saccharomyces cerevisiae for Selection in Rice Transformation
 WANG Tao, LIU Liang-yu, TANG Yong-yan, ZHANG Xiao-bo, ZHANG Mei-dong, ZHENG Yong-lian,  ZHANG Fang-dong
National Key Laboratory of Crop Genetic Improvement, Ministry of Science and Technology/Huazhong Agricultural University, Wuhan 430070,P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The phosphomannose isomerase (PMI) gene from Saccharomyces cerevisiae acted as selectable marker and mannose acted as selective agent for the production of transgenic plants of rice (Oryza sativa L.) via Agrobacterium-mediated transformation. The concentration of mannose during the selection was stepwise increased, 5 g L-1 mannose combined with 15 g L-1 sucrose and 500 mg L-1 cefotaxime was used in the initial selection stage, then the concentration of mannose was increased to 11 g L-1, the highest transformation rate was 20.0%. The integration of PMI gene was confirmed by PCR, and the result of RT-PCR assay proved that the intron of PMI gene can be excised correctly during RNA splicing. β- Glucuronidase (GUS) activity analysis confirmed the expression of GUS gene. All those means the PMI gene from yeast can be used as a selectable marker in rice transformation.

Abstract  The phosphomannose isomerase (PMI) gene from Saccharomyces cerevisiae acted as selectable marker and mannose acted as selective agent for the production of transgenic plants of rice (Oryza sativa L.) via Agrobacterium-mediated transformation. The concentration of mannose during the selection was stepwise increased, 5 g L-1 mannose combined with 15 g L-1 sucrose and 500 mg L-1 cefotaxime was used in the initial selection stage, then the concentration of mannose was increased to 11 g L-1, the highest transformation rate was 20.0%. The integration of PMI gene was confirmed by PCR, and the result of RT-PCR assay proved that the intron of PMI gene can be excised correctly during RNA splicing. β- Glucuronidase (GUS) activity analysis confirmed the expression of GUS gene. All those means the PMI gene from yeast can be used as a selectable marker in rice transformation.
Keywords:  phosphomannose isomerase      selectable marker      Saccharomyces cerevisiae      transformation      rice  
Received: 16 May 2011   Accepted:
Fund: 

This study was supported by the Genetically modified organisms breeding major projects,China(2011ZX08003-003)

Corresponding Authors:  Correspondence ZHANG Fang-dong, Tel: +86-27-87282689, E-mail: fdzhang@mail.hzau.edu.cn     E-mail:  fdzhang@mail.hzau.edu.cn
About author:  WANG Tao, E-mail: wt2915@163.com;

Cite this article: 

WANG Tao, LIU Liang-yu, TANG Yong-yan, ZHANG Xiao-bo, ZHANG Mei-dong, ZHENG Yong-lian, ZHANG Fang-dong. 2012. Using the Phosphomannose Isomerase (PMI) Gene from Saccharomyces cerevisiae for Selection in Rice Transformation. Journal of Integrative Agriculture, 12(9): 1391-1398.

[1]Baskin A T I, Remillong E L, Wilson J E. 2001. The impact of mannose and other carbon sources on the elongation and diameter of the primary root of Arabidopsis thaliana. Plant Physiology, 28, 481-488.

[2]Boscariol R L, Almeida W A B, Derbyshire M T V C, Mourao F A A, Mendes B M J. 2003. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Reports, 22, 122-128.

[3]Briza J, Pavingerova D, Prikrylova P, Gazdova J, Vlasak J, Niedermeierova H. 2008. Use of phosphomannose isomerase-based selection system for Agrobacteriummediated transformation of tomato and potato. Biologia Plantarum, 52, 453-461.

[4]Briza J, Ruzickova N, Niedermeierova H, Dusbaskova J, Vlasak J. 2010. Phosphomannose isomerase gene for selection in lettuce (Lactuca sativa L.) transformation. Acta Biochimica Polonica, 57, 63-68.

[5]Degenhardt J, Poppe A, Montag J, Szankowski I. 2006. The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Reports, 25, 1149-1156.

[6]Dellaporta S L, Wood J, Hicks J B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19-21.

[7]Gadaleta A, Giancaspro A, Blechl A, Blanco A. 2006. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. Journal of Cereal Science, 43, 31-37.

[8]Gao Z S, Xie X J, Ling Y, Muthukrishnan S, Liang G H. 2005. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnology Journal, 3, 591-599.

[9]Goldsworthy A, Street H E. 1965. The carbohydrate nutrition of tomato roots. VIII. The mechanism of the inhibition by D-mannose of the respiration of excised roots. Annals of Botany, 29, 45-58.

[10]Haldrup A, Petersen S G, Okkels F T. 1998. Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Reports, 18, 76-81.

[11]He Z Q, Duan Z Z, Liang W, Chen F J, Yao W, Liang H W, Yue C Y, Sun Z X, Chen F, Dai J W. 2006. Mannose selection system used for cucumber transformation. Plant Cell Reports, 25, 953-958.

[12]He Z Q, Fu Y P, Si H M, Hu G C, Zhang S H, Yu Y H, Sun Z X. 2004. Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Science, 166, 17-22.

[13]Jain M, Chengalrayan K, Abouzid A, Gallo M. 2007. Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Reports, 26, 581-590.

[14]Jang J C, Sheen J. 1994. Sugar sensing in higher plants. The Plant Cell, 6, 1665-1679.

[15]Jang J C, Sheen J. 1997. Sugar sensing in higher plants. Trends in Plant Science, 2, 208-214.

[16]Jeferson R A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387-405.

[17]Joersbo M, Donaldson I, Kreiberg J, Petersen S G, Brunstedt J, Okkels F T. 1998. Analysis of mannose selection used for transformation of sugar beet. Molecular Breeding, 4, 111-117.

[18]Joersbo M, Okkels F T. 1996. A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Reports, 6, 219-221.

[19]Lee B T, Matheson N K. 1984. Phosphomannoisomerase and phosphoglucoisomerasein seeds of Cassia coluteoides and some other legumes that synthesize galactomannan. Phytochemistry, 23, 983-987.

[20]Lin Y J, Chen H, Cao Y L, Wu C Y, Wen J, Li Y F, Hua H X. 2002. Establishment of high-efficiency Agrobacteriummediated transformation system of Mudanjiang 8. Acta Agronomica Sinica, 28, 294-300. (in Chinese)

[21]Lucca P, Ye X, Potrykus I. 2001. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Molecular Breeding, 7, 43-49.

[22]Miles J, Guest J. 1984. Nucleotide sequence and transcriptional start point of the phosphomannoseisomerase gene (manA) of Escherichia coli. Gene, 2, 41-48.

[23]Min B W, Cho Y N, Song M J, Noh T K, Kim B K, Chae W K, Park Y S, Choi Y D, Harn C H. 2007. Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Reports, 26, 337-344.

[24]Negrotto D, Jolley M, Beer S, Wenck A R, Hansen G. 2000. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Reports, 19, 798-803.

[25]Pego J V, Weisbeek P J, Smeekens S C M. 1999. Mannose inhibits Arabidopsis thaliana germination via a hexokinase-mediated step. Plant Physiology, 119, 1017-1023.

[26]Rook F, Hadingham S A, Li Y, Bevan M W. 2006. Sugar and ABA response pathways and the control of gene expression. Plant Cell and Environment, 29, 426-434.

[27]Sheu-Hwa C S, Lewis D H, Walker D A. 1975. Stimulation of photosynthetic starch formation by sequestration of cytoplasmic orthophosphate. New Phytologist, 74, 383-392.

[28]Sigareva M, Spivey R, Willits M, Kramer C, Chang Y F. 2004. An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Reports, 23, 236-245.

[29]Todd R, Tague B W. 2001. Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germ-line transformation. Plant Molecular Biology Reporter, 19, 307-319.

[30]Vaccari I, Martinelli L. 2009. Evaluation of the phosphomannose isomerase-based selection system for gene transfer in grape. Vitis, 48, 137-144.

[31]Wang A S, Evans R A, Altendorf P R, Hanten J A, Doyle M C, Rosichan J L. 2000. A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Reports, 19, 654-660.

[32]Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L. 2001. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Reports, 20, 429-436.

[33]Yuan K, Wysocka-Diller J. 2006. Phytohormone signalling pathways interact with sugars during seed germination and seedling development. Journal of Experimental Botany, 57, 3359-3367.

[34]Zhou X L, Shen W, Rao Z M, Wang Z, Xiang Z J. 2004. A rapid method for reparation of fungal chromosome DNA. Microbiology, 31, 89-92. (in Chinese)

[35]Zhu Y J, Agbayani R, McCafferty H, Albert H H, Moore P H. 2005. Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Reports, 24, 426-432.
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[5] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[6] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[7] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[8] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[11] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[12] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[13] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[14] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[15] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
No Suggested Reading articles found!