Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (3): 387-396    DOI: 10.1016/S1671-2927(00)8556
GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimization of Transformation Efficiency of Suspension Cultured Vitis vinifera cv. Chardonnay Embryogenic Cells
 WU Jiao, HE Rong-rong, WANG Chao-xia
1.College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R.China
2.Center for Viticulture and Small Fruit Research, Florida A&M University, Tallahassee 32317, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Vitis vinifera cv. Chardonnay suspension cultures were established from proembryogenic mass and employed for optimizing Agrobacterium-mediated transformation system. One-factor-at-a-time experiment revealed that OD600 of Agrobacterium,time of inoculation, co-cultivation, and cell-drying before inoculation significantly affected the transformation efficiencywhich reached maximum 21.5% at the following conditions: 0.8 of OD600, 25 min of inoculation, 2 d of co-cultivation, and 10min of cell drying. Response surface methodology experiments based on a five-level, four-factor central-compositerotatable design were then used to optimize these selected factors. The optimized conditions for Chardonnay grapetransformation were: 0.8711 of OD600, 28.9 min of inoculation, 2.25 d of co-cultivation and 11.76 min of cell drying. Afteroptimization, transformation efficiency was 26.2% and there were no interactions among different factors.

Abstract  Vitis vinifera cv. Chardonnay suspension cultures were established from proembryogenic mass and employed for optimizing Agrobacterium-mediated transformation system. One-factor-at-a-time experiment revealed that OD600 of Agrobacterium,time of inoculation, co-cultivation, and cell-drying before inoculation significantly affected the transformation efficiencywhich reached maximum 21.5% at the following conditions: 0.8 of OD600, 25 min of inoculation, 2 d of co-cultivation, and 10min of cell drying. Response surface methodology experiments based on a five-level, four-factor central-compositerotatable design were then used to optimize these selected factors. The optimized conditions for Chardonnay grapetransformation were: 0.8711 of OD600, 28.9 min of inoculation, 2.25 d of co-cultivation and 11.76 min of cell drying. Afteroptimization, transformation efficiency was 26.2% and there were no interactions among different factors.
Keywords:  transformation      Chardonnay      suspension cultures      response surface methodology  
Received: 12 October 2010   Accepted:
Fund: 

This research was supported by the 948 Program, Ministry of Agriculture, China (2006-G26) and the National Grape Industry Technology System, China (nycytx-30-zy-05).

Corresponding Authors:  Correspondence LU Jiang, Tel: +1-850-412-7393, Fax: +1-850-412-7464, E-mail: j.lu.cau@gmail.com     E-mail:  j.lu.cau@gmail.com
About author:  WU Jiao, Tel: +86-10-62737465, E-mail: jiaolong722@gmail.com; ZHANG Ya-li, Tel: +86-10-62737465, E-mail: olivia.yl.zhang@gmail.com

Cite this article: 

WU Jiao, HE Rong-rong, WANG Chao-xia. 2012. Optimization of Transformation Efficiency of Suspension Cultured Vitis vinifera cv. Chardonnay Embryogenic Cells. Journal of Integrative Agriculture, 12(3): 387-396.

[1]Alleweldt G, Possingham J V. 1988. Progress in grapevinebreeding. Theoretical and Applied Genetics, 75, 669-673.

[2]Berres R, Otten L, Tinland B, Malgarini-Clog E, Walter B. 1992.Transformation of Vitis tissue by different strains ofAgrobacterium tumefaciens containing the T-6b gene. PlantCell Reports, 11, 192-195.

[3]Dhekney S A, Li Z T, Dutt M, Gray D J. 2008. Agrobacteriummediatedtransformation of embryogenic cultures and plantregeneration in Vitis rotundifolia Michx. (muscadine grape).Plant Cell Reports, 27, 865-872.

[4]Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J. 2008.Agrobacterium-mediated genetic transformation of grapevine(Vitis vinifera L.) with a novel stilbene synthase gene fromChinese wild Vitis pseudoreticulata. Plant Cell, Tissue andOrgan Culture, 92, 197-206.

[5]Finer J J, McMullen M D. 1991. Transformation of soybean viaparticle bombardment of embryogenic suspension culturetissue. In Vitro Cellular and Developmental Biology, 27, 115-182.

[6]Fischer R, Nölke G, Orecchia M, Schillberg S, Twyman R M.2004. Improvement of grapevine using current biotechnology.Acta Horticulturae (ISHS), 652, 383-390.

[7]Franks T, He D G, Thomas M R. 1998. Regeneration oftransgenic Vitis vinifera L. Sultana plants: genotypic andphenotypic analysis. Molecular Breeding, 4, 321-333.

[8]Harst M, Bornhoff B A, Zyprian E, Töpfer R. 2000. Influenceof culture technique and genotype on the efficiency ofAgrobacterium-mediated transformation of somatic embryos(Vitis vinifera) and their conversion to transgenic plants. Vitis,39, 99-102.

[9]Hébert D, Kikkert J R, Smith F D, Reisch B I. 1993. Optimizationof biolistic transformation of embryogenic grape cellsuspensions. Plant Cell Reports, 12, 585-589.

[10]Iocco P, Franks T, Thomas M R. 2001. Genetic transformationof major wine grape cultivars of Vitis vinifera L. TransgenicResearch, 10, 105-112.

[11]Kikkert J R, Thomas M R, Reisch B I. 2001. Grapevine geneticengineering. In: Roubelakis-Angelakis K A, ed., MolecularBiology & Biotechnology of the Grapevine. Kluwer AcademicPublishers, The Netherlands. pp. 393-410.

[12]Li Z T, Dhekney S, Dutt M, Vanaman M, Tattersall J, Kelley KT, Gray D J. 2006. Optimizing Agrobacterium-mediatedtransformation of grapevine. In Vitro Cellular andDevelopmental Biology-Plant, 42, 220-227.

[13]Liu J Z, Weng L P, Zhang Q L, Xu H, Ji L N. 2003. Optimizationof glucose oxidase production by Aspergillus niger in abenchtop bioreactor using response surface methodology.World Journal of Microbiology and Biotechnology, 19, 317-323.

[14]Maghuly F, Leopold S, da Camara Machado A, Borroto FernandezE, Ali Khan M, Gambino G, Gribaudo I, Schartl A, LaimerM. 2006. Molecular characterization of grapevine plantstransformed with GFLV resistance genes: II. Plant CellReports, 25, 546-553.

[15]Mauro M C, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P. 1995. High efficiencyregeneration of grapevine plants transformed with the GFLVcoat protein gene. Plant Science, 112, 97-106.

[16]Mozsár J, Viczián O, Süle S. 1998. Agrobacterium-mediatedgenetic transformation of an interspecific grapevine. Vitis,37, 127-130.

[17]Oláh R, Szegedi E, Ruthner S, Korbuly J. 2003. Optimization ofconditions for regeneration and genetic transformation ofrootstock-and scion grape varieties. Acta Horticulturae, 603,491-497.

[18]Osório N M, Ferreira-Dias S, Gusmão J H, Fonseca M M R.2001. Response surface modelling of the production of ω-3polyunsaturated fatty acids-enriched fats by a commercialimmobilized lipase. Journal of Molecular Catalysis (B:Enzymatic), 11, 677-686.

[19]Perl A, Lotan O, Abu-Abied M, Holland D. 1996. Establishmentof an Agrobacterium-mediated trasnforamtion system forgrape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nature Biotechnology, 14, 624-628.

[20]Pujari V, Chandra T S. 2000. Statistical optimization of mediumcomponents for enhanced riboflavin production by a UVmutantof Eremothecium ashbyii. Process Biochemistry, 36,31-37.

[21]Rao K J, Kim C H, Rhee S K. 2000. Statistical optimization ofmedium for the production of recombinant hirudin fromSaccharomyces cerevisiae using response surfacemethodology. Process Biochemistry, 35, 639-647.

[22]Spielmann A, Krastanova S, Douet-Orhant V, Gugerli P. 2000.Analisys of transgenic grapevine (Vitis rupestris) andNicotiana benthamiana plants expressing an Arabis mosaicvirus coat protein gene. Plant Science, 156, 235-244.

[23]Torregrosa L, Iocco P, Thomas M R. 2002. Influence ofAgrobacterium strain, culture medium, and cultivar on thetransformation efficiency of Vitis vinifera L. American Journalof Enology and Viticulture, 53, 183-190.

[24]Triveni R, Shamala T R, Rastogi N K. 2001. Optimisedproduction and utilisation of exopolysaccharide fromAgrobacterium radiobacter. Process Biochemistry, 36, 787-795.

[25]Vidal J R, Kikkert J R, Malnoy M A, Wallace P G, Barnard J,Reisch B I. 2006. Evaluation of transgenic ‘Chardonnay’(Vitis vinifera) containing magainin genes for resistance tocrown gall and powdery mildew. Transgenic Research, 15,69-82.

[26]Vidal J R, Kikkert J R, Wallace P G, Reisch B I. 2003. High efficiency biolistic co-transformation and regeneration of‘Chardonnay’ (Vitis vinifera L.) containing npt-II andantimicrobial peptide genes. Plant Cell Reports, 22, 252-260.

[27]Winkler A J, Cook J A, Kliewer W M, Lider L A. 1974. GeneralViticulture. University of California Press, Berkeley.Walker M A, Jin Y. 2000. Breeding Vitis rupestris×Muscadiniarotundifolia rootstocks to control Xiphinema index andfanleaf degeneration. Acta Horticulturae, 528, 517-522.
[1] LIU Yu-song, WANG Hong-ying, ZHAO Yong-juan, JIN Yi-bo, LI Chao, MA Feng-wang. Establishment of an efficient regeneration and genetic transformation system for Malus prunifolia Borkh. ‘Fupingqiuzi’[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2615-2627.
[2] LI Yan-yan, GUO Li-na, LIANG Cheng-zhen, MENG Zhi-gang, Syed Tahira, GUO San-dui, ZHANG Rui. Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass[J]. >Journal of Integrative Agriculture, 2022, 21(1): 49-59.
[3] ZHANG Xiu-ming, WU Yi-fei, LI Zhi, SONG Chang-bing, WANG Xi-ping. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.)[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1407-1434.
[4] FAN Sheng-gen, Emily EunYoung CHO. Paths out of poverty: International experience[J]. >Journal of Integrative Agriculture, 2021, 20(4): 857-867.
[5] ZHANG Jun-hua, HUANG Jing, Sajid HUSSAIN, ZHU Lian-feng, CAO Xiao-chuang, ZHU Chun-quan, JIN Qian-yu, ZHANG Hui. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
[6] GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan. Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1186-1196.
[7] CHANG Hui-qing, WANG Qi-zhen, LI Zhao-jun, WU Jie, XU Xiao-feng, SHI Zhao-yong.
The effects of calcium combined with chitosan amendment on the bioavailability of exogenous Pb in calcareous soil
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1375-1386.
[8] HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2612-2623.
[9] GUO Wen-fang, Kevin Yueju Wang, WANG Nan, LI Jun, LI Gang-qiang, LIU De-hu. Rapid and convenient transformation of cotton (Gossypium hirsutum L.) using in planta shoot apex via glyphosate selection[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2196-2203.
[10] Srinivasan Balamurugan, Jayan Susan Ann, Inchakalody P Varghese, Shanmugaraj Bala Murugan, Mani Chandra Harish, Sarma Rajeev Kumar, Ramalingam Sathishkumar. Heterologous expression of Lolium perenne antifreeze protein confers chilling tolerance in tomato[J]. >Journal of Integrative Agriculture, 2018, 17(05): 1128-1136.
[11] JU Xiao-tang, ZHANG Chong. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2848-2862.
[12] DAI Shen-yan, WANG Jing, CHENG Yi, ZHANG Jin-bo, CAI Zu-cong. Effects of long-term fertilization on soil gross N transformation rates and their implications[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2863-2870.
[13] XU Kun, ZHANG Xiao-mei, FAN Cheng-ming, CHEN Fu-lu, ZHU Jin-long, ZHANG Shi-long, CHEN Qing-shan, FU Yong-fu. A callus transformation system for gene functional studies in soybean[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1913-1922.
[14] ZHANG Xiao-bing, TANG Qiao-ling, WANG Xu-jing, WANG Zhi-xing. Development of glyphosate-tolerant transgenic cotton plants harboring the G2-aroA gene[J]. >Journal of Integrative Agriculture, 2017, 16(03): 551-558.
[15] XU Yuan-yuan, WANG Jing, NIE Shan-shan, HUANG Dan-qiong, WANG Yan, XU Liang, WANG Rong-hua, LUO Xiao-bo, LIU Li-wang. Isolation and molecular characterization of the FLOWERING LOCUS C gene promoter sequence in radish (Raphanus sativus L.)[J]. >Journal of Integrative Agriculture, 2016, 15(4): 763-774.
No Suggested Reading articles found!