Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (3): 387-396    DOI: 10.1016/S1671-2927(00)8556
GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS Advanced Online Publication | Current Issue | Archive | Adv Search |
Optimization of Transformation Efficiency of Suspension Cultured Vitis vinifera cv. Chardonnay Embryogenic Cells
 WU Jiao, HE Rong-rong, WANG Chao-xia
1.College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R.China
2.Center for Viticulture and Small Fruit Research, Florida A&M University, Tallahassee 32317, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Vitis vinifera cv. Chardonnay suspension cultures were established from proembryogenic mass and employed for optimizing Agrobacterium-mediated transformation system. One-factor-at-a-time experiment revealed that OD600 of Agrobacterium,time of inoculation, co-cultivation, and cell-drying before inoculation significantly affected the transformation efficiencywhich reached maximum 21.5% at the following conditions: 0.8 of OD600, 25 min of inoculation, 2 d of co-cultivation, and 10min of cell drying. Response surface methodology experiments based on a five-level, four-factor central-compositerotatable design were then used to optimize these selected factors. The optimized conditions for Chardonnay grapetransformation were: 0.8711 of OD600, 28.9 min of inoculation, 2.25 d of co-cultivation and 11.76 min of cell drying. Afteroptimization, transformation efficiency was 26.2% and there were no interactions among different factors.

Abstract  Vitis vinifera cv. Chardonnay suspension cultures were established from proembryogenic mass and employed for optimizing Agrobacterium-mediated transformation system. One-factor-at-a-time experiment revealed that OD600 of Agrobacterium,time of inoculation, co-cultivation, and cell-drying before inoculation significantly affected the transformation efficiencywhich reached maximum 21.5% at the following conditions: 0.8 of OD600, 25 min of inoculation, 2 d of co-cultivation, and 10min of cell drying. Response surface methodology experiments based on a five-level, four-factor central-compositerotatable design were then used to optimize these selected factors. The optimized conditions for Chardonnay grapetransformation were: 0.8711 of OD600, 28.9 min of inoculation, 2.25 d of co-cultivation and 11.76 min of cell drying. Afteroptimization, transformation efficiency was 26.2% and there were no interactions among different factors.
Keywords:  transformation      Chardonnay      suspension cultures      response surface methodology  
Received: 12 October 2010   Accepted:
Fund: 

This research was supported by the 948 Program, Ministry of Agriculture, China (2006-G26) and the National Grape Industry Technology System, China (nycytx-30-zy-05).

Corresponding Authors:  Correspondence LU Jiang, Tel: +1-850-412-7393, Fax: +1-850-412-7464, E-mail: j.lu.cau@gmail.com     E-mail:  j.lu.cau@gmail.com
About author:  WU Jiao, Tel: +86-10-62737465, E-mail: jiaolong722@gmail.com; ZHANG Ya-li, Tel: +86-10-62737465, E-mail: olivia.yl.zhang@gmail.com

Cite this article: 

WU Jiao, HE Rong-rong, WANG Chao-xia. 2012. Optimization of Transformation Efficiency of Suspension Cultured Vitis vinifera cv. Chardonnay Embryogenic Cells. Journal of Integrative Agriculture, 12(3): 387-396.

[1]Alleweldt G, Possingham J V. 1988. Progress in grapevinebreeding. Theoretical and Applied Genetics, 75, 669-673.

[2]Berres R, Otten L, Tinland B, Malgarini-Clog E, Walter B. 1992.Transformation of Vitis tissue by different strains ofAgrobacterium tumefaciens containing the T-6b gene. PlantCell Reports, 11, 192-195.

[3]Dhekney S A, Li Z T, Dutt M, Gray D J. 2008. Agrobacteriummediatedtransformation of embryogenic cultures and plantregeneration in Vitis rotundifolia Michx. (muscadine grape).Plant Cell Reports, 27, 865-872.

[4]Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J. 2008.Agrobacterium-mediated genetic transformation of grapevine(Vitis vinifera L.) with a novel stilbene synthase gene fromChinese wild Vitis pseudoreticulata. Plant Cell, Tissue andOrgan Culture, 92, 197-206.

[5]Finer J J, McMullen M D. 1991. Transformation of soybean viaparticle bombardment of embryogenic suspension culturetissue. In Vitro Cellular and Developmental Biology, 27, 115-182.

[6]Fischer R, Nölke G, Orecchia M, Schillberg S, Twyman R M.2004. Improvement of grapevine using current biotechnology.Acta Horticulturae (ISHS), 652, 383-390.

[7]Franks T, He D G, Thomas M R. 1998. Regeneration oftransgenic Vitis vinifera L. Sultana plants: genotypic andphenotypic analysis. Molecular Breeding, 4, 321-333.

[8]Harst M, Bornhoff B A, Zyprian E, Töpfer R. 2000. Influenceof culture technique and genotype on the efficiency ofAgrobacterium-mediated transformation of somatic embryos(Vitis vinifera) and their conversion to transgenic plants. Vitis,39, 99-102.

[9]Hébert D, Kikkert J R, Smith F D, Reisch B I. 1993. Optimizationof biolistic transformation of embryogenic grape cellsuspensions. Plant Cell Reports, 12, 585-589.

[10]Iocco P, Franks T, Thomas M R. 2001. Genetic transformationof major wine grape cultivars of Vitis vinifera L. TransgenicResearch, 10, 105-112.

[11]Kikkert J R, Thomas M R, Reisch B I. 2001. Grapevine geneticengineering. In: Roubelakis-Angelakis K A, ed., MolecularBiology & Biotechnology of the Grapevine. Kluwer AcademicPublishers, The Netherlands. pp. 393-410.

[12]Li Z T, Dhekney S, Dutt M, Vanaman M, Tattersall J, Kelley KT, Gray D J. 2006. Optimizing Agrobacterium-mediatedtransformation of grapevine. In Vitro Cellular andDevelopmental Biology-Plant, 42, 220-227.

[13]Liu J Z, Weng L P, Zhang Q L, Xu H, Ji L N. 2003. Optimizationof glucose oxidase production by Aspergillus niger in abenchtop bioreactor using response surface methodology.World Journal of Microbiology and Biotechnology, 19, 317-323.

[14]Maghuly F, Leopold S, da Camara Machado A, Borroto FernandezE, Ali Khan M, Gambino G, Gribaudo I, Schartl A, LaimerM. 2006. Molecular characterization of grapevine plantstransformed with GFLV resistance genes: II. Plant CellReports, 25, 546-553.

[15]Mauro M C, Toutain S, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P. 1995. High efficiencyregeneration of grapevine plants transformed with the GFLVcoat protein gene. Plant Science, 112, 97-106.

[16]Mozsár J, Viczián O, Süle S. 1998. Agrobacterium-mediatedgenetic transformation of an interspecific grapevine. Vitis,37, 127-130.

[17]Oláh R, Szegedi E, Ruthner S, Korbuly J. 2003. Optimization ofconditions for regeneration and genetic transformation ofrootstock-and scion grape varieties. Acta Horticulturae, 603,491-497.

[18]Osório N M, Ferreira-Dias S, Gusmão J H, Fonseca M M R.2001. Response surface modelling of the production of ω-3polyunsaturated fatty acids-enriched fats by a commercialimmobilized lipase. Journal of Molecular Catalysis (B:Enzymatic), 11, 677-686.

[19]Perl A, Lotan O, Abu-Abied M, Holland D. 1996. Establishmentof an Agrobacterium-mediated trasnforamtion system forgrape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nature Biotechnology, 14, 624-628.

[20]Pujari V, Chandra T S. 2000. Statistical optimization of mediumcomponents for enhanced riboflavin production by a UVmutantof Eremothecium ashbyii. Process Biochemistry, 36,31-37.

[21]Rao K J, Kim C H, Rhee S K. 2000. Statistical optimization ofmedium for the production of recombinant hirudin fromSaccharomyces cerevisiae using response surfacemethodology. Process Biochemistry, 35, 639-647.

[22]Spielmann A, Krastanova S, Douet-Orhant V, Gugerli P. 2000.Analisys of transgenic grapevine (Vitis rupestris) andNicotiana benthamiana plants expressing an Arabis mosaicvirus coat protein gene. Plant Science, 156, 235-244.

[23]Torregrosa L, Iocco P, Thomas M R. 2002. Influence ofAgrobacterium strain, culture medium, and cultivar on thetransformation efficiency of Vitis vinifera L. American Journalof Enology and Viticulture, 53, 183-190.

[24]Triveni R, Shamala T R, Rastogi N K. 2001. Optimisedproduction and utilisation of exopolysaccharide fromAgrobacterium radiobacter. Process Biochemistry, 36, 787-795.

[25]Vidal J R, Kikkert J R, Malnoy M A, Wallace P G, Barnard J,Reisch B I. 2006. Evaluation of transgenic ‘Chardonnay’(Vitis vinifera) containing magainin genes for resistance tocrown gall and powdery mildew. Transgenic Research, 15,69-82.

[26]Vidal J R, Kikkert J R, Wallace P G, Reisch B I. 2003. High efficiency biolistic co-transformation and regeneration of‘Chardonnay’ (Vitis vinifera L.) containing npt-II andantimicrobial peptide genes. Plant Cell Reports, 22, 252-260.

[27]Winkler A J, Cook J A, Kliewer W M, Lider L A. 1974. GeneralViticulture. University of California Press, Berkeley.Walker M A, Jin Y. 2000. Breeding Vitis rupestris×Muscadiniarotundifolia rootstocks to control Xiphinema index andfanleaf degeneration. Acta Horticulturae, 528, 517-522.
[1] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[2] Yanan Chang, Junxian Liu, Chang Liu, Huiyun Liu, Huali Tang, Yuliang Qiu, Zhishan Lin, Ke Wang, Yueming Yan, Xingguo Ye.

Establishment of a transformation system in close relatives of wheat under the assistance of TaWOX5 [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1839-1849.

[3] Ping Wei, Hongman Liu, Chaokai Xu, Shibin Wen.

Does Green Food Certification promote agri-food export quality?  Evidence from China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1061-1074.

[4] SHI Peng-fei, HUANG Ji-kun. Rural transformation, income growth, and poverty reduction by region in China in the past four decades[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3582-3595.
[5] Maria Fay ROLA-RUBZEN, Hue T. VUONG, Claire DOLL, Curtis ROLLINS, Jon Marx SARMIENTO, Mohammad Jahangir ALAM, Ismat Ara BEGUM. Gender and rural transformation: A systematic literature review[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3624-3637.
[6] ABEDULLAH, Shujaat FAROOQ, Farah NAZ. Developing strategy for rural transformation to alleviate poverty in Pakistan: Stylized facts from panel analysis[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3610-3623.
[7] Dong WANG, Chunlai CHEN, Christopher FINDLAY. A review of rural transformation studies: Definition, measurement, and indicators[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3568-3581.
[8] Tahlim SUDARYANTO, ERWIDODO, Saktyanu Kristyantoadi DERMOREDJO, Helena Juliani PURBA, Rika Reviza RACHMAWATI, Aldho Riski IRAWAN. Regional rural transformation and its association with household income and poverty incidence in Indonesia in the last two decades[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3596-3609.
[9] LIU Yu-song, WANG Hong-ying, ZHAO Yong-juan, JIN Yi-bo, LI Chao, MA Feng-wang. Establishment of an efficient regeneration and genetic transformation system for Malus prunifolia Borkh. ‘Fupingqiuzi’[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2615-2627.
[10] LI Yan-yan, GUO Li-na, LIANG Cheng-zhen, MENG Zhi-gang, Syed Tahira, GUO San-dui, ZHANG Rui. Overexpression of Brassica napus cytosolic fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase genes significantly enhanced tobacco growth and biomass[J]. >Journal of Integrative Agriculture, 2022, 21(1): 49-59.
[11] ZHANG Xiu-ming, WU Yi-fei, LI Zhi, SONG Chang-bing, WANG Xi-ping. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.)[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1407-1434.
[12] FAN Sheng-gen, Emily EunYoung CHO. Paths out of poverty: International experience[J]. >Journal of Integrative Agriculture, 2021, 20(4): 857-867.
[13] ZHANG Jun-hua, HUANG Jing, Sajid HUSSAIN, ZHU Lian-feng, CAO Xiao-chuang, ZHU Chun-quan, JIN Qian-yu, ZHANG Hui. Increased ammonification, nitrogenase, soil respiration and microbial biomass N in the rhizosphere of rice plants inoculated with rhizobacteria[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2781-2796.
[14] GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan. Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1186-1196.
[15] CHANG Hui-qing, WANG Qi-zhen, LI Zhao-jun, WU Jie, XU Xiao-feng, SHI Zhao-yong.
The effects of calcium combined with chitosan amendment on the bioavailability of exogenous Pb in calcareous soil
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1375-1386.
No Suggested Reading articles found!