Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (9): 2615-2627    DOI: 10.1016/j.jia.2022.07.023
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Establishment of an efficient regeneration and genetic transformation system for Malus prunifolia Borkh. ‘Fupingqiuzi’
LIU Yu-song*, WANG Hong-ying*, ZHAO Yong-juan, JIN Yi-bo, LI Chao, MA Feng-wang

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究评估了影响富平楸子再生及遗传转化体系的因素,发现富平楸子最佳再生体系为使用叶片为外植体,对叶片进行横切,近轴面贴近包含有MS、30 g L-1蔗糖、8 g L-1琼脂、5 mg L-1 6-BA、2 mg L-1 TDZ 和1 mg L-1 NAA,pH为5.8的培养基上暗培养三周后见光培养,最佳遗传转化体系为在根癌农杆菌重悬液中侵染8min,然后进行4天共培养及3天延迟培养,并且使用150 mg L-1头孢噻肟和15 mg L-1卡那霉素作为筛选压。本研究建立了一套有效的富平楸子再生及遗传转化体系,通过此体系可快速获得富平楸子转基因材料,对苹果生物学研究具有重要意义




Abstract  

Malus prunifolia Borkh. ‘Fupingqiuzi’ has significant ecological and economic value and plays a key role in germplasm development and resistance research.  However, its long juvenile phase and high heterozygosity are barriers to the identification of ‘Fupingqiuzi’ progeny with excellent traits.  In-vitro regeneration techniques and Agrobacterium-mediated genetic transformation systems can efficiently produce complete plants and thus enable studies of gene function.  However, optimal regeneration and genetic transformation systems for ‘Fupingqiuzi’ have not yet been developed.  Here, we evaluated the factors that affect the in-vitro regeneration and transformation of ‘Fupingqiuzi’.  The best results were obtained when transverse leaf sections were used as explants, and they were grown in dark culture for three weeks with their adaxial sides contacting the culture medium (MS basal salts, 30 g L−1 sucrose, 8 g L−1 agar, 5 mg L−1  6-benzylaminopurine (6-BA), 2 mg L−1 thidiazuron (TDZ), and 1 mg L−1 1-naphthlcetic acid (NAA), pH 5.8).  A genetic transformation system based on this regeneration system was optimized: after inoculation with A. tumefaciens solution for 8 min, 4 days of co-culture, and 3 days of delayed culture, the cultures were screened with cefotaxime (150 mg L−1) and kanamycin (15 mg L−1).  We thus established an efficient regeneration and genetic transformation system for ‘Fupingqiuzi’, enabling the rapid production of transgenic material.  These findings make a significant contribution to apple biology research

Keywords:  Malus. prunifolia Borkh       ‘Fupingqiuzi’       regeneration system       Agrobacterium-mediated transformation system  
Received: 13 December 2021   Accepted: 21 March 2022
Fund: 

This work was supported by the National Key Research and Development Program of China (2019YFD1001403-4),
the Key S&T Special Projects of Shaanxi Province, China (2020zdzx03-01-02) and the earmarked fund for the China Agriculture Research System of MOF and MARA (CARS-27).

About author:  LIU Yu-song, E-mail: liuys1013@163.com; WANG Hong-ying, E-mail: 757946222@qq.com; Correspondence LI Chao, E-mail: lc453@163.com; MA Feng-wang, Tel/Fax: +86-29-87082648, E-mail: fwm64@nwsuaf.edu.cn * These authors contribute equally to this study.

Cite this article: 

LIU Yu-song, WANG Hong-ying, ZHAO Yong-juan, JIN Yi-bo, LI Chao, MA Feng-wang. 2022. Establishment of an efficient regeneration and genetic transformation system for Malus prunifolia Borkh. ‘Fupingqiuzi’. Journal of Integrative Agriculture, 21(9): 2615-2627.

Ahmadabadi M, Ruf S, Bock R. 2007. A leaf-based regeneration and transformation system for maize (Zea mays L.). Journal of Transgenic Research, 16, 437–448.
Asande L K, Omwoyo R O, Oduor R O, Nyaboga E N. 2020. A  simple and fast Agrobacterium-mediated transformation system for passion fruit KPF4 (Passiflora edulis f. edulis×Passiflora
edulis f. flavicarpa). Plant Methods, 16, 141.
Bajaj R, Irvin L M, Vaidya B N, Dhekney S A, Joshee N. 2021. Optimizing plant regeneration and genetic transformation of Paulownia elongata. Biocatalysis and Agricultural Biotechnology, 33, 101970.
Bao L, Li K, Liu Z, Han M, Zhang D. 2016. Characterization of the complete chloroplast genome of the Chinese crabapple Malus prunifolia (Rosales: Rosaceae: Maloideae). Conservation Genetics Resources, 8, 227–229.
Bhagwat B, Lane W D. 2004. In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) ‘Lapins’ and ‘Sweetheart’. Plant Cell, Tissue and Organ Culture, 78, 173–181.
Bhatia P, Ashwath N, Midmore D J. 2005. Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cellular & Developmental Biology - Plant, 41, 457–464.
Chai C J, Sun S H, Wang Y, Peng L X. 2011. Plant regeneration from in vitro cultured leaves of Malus zumi. Journal of Fruit Science, 28, 124–128. (in Chinese)
Chen J. 2019. Efficient somatic embryogenesis and plant regeneration through callus initiation from seedling-derived leaf materials of maize (Zea mays L.). Agricultural Biotechnology, 8, 25–28.
Chugh S, Guha S, Rao I U. 2009. Micropropagation of orchids: A review on the potential of different explants. Scientia Horticulturae, 122, 507–520.
Da K, Zhang S, Mi R, Zhou Z, Wei Q, Shu H. 2001. Wounding induced efficient direct somatic embryogenesis in apple leaves. Acta Agriculturae Nucleatae Sinica, 15, 290–293. (in Chinese)
Dai H, Li W, Han G, Yang Y, Ma Y, Li H, Zhang Z. 2013a. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae, 164, 202–208.
Dai H, Li W, Mao W, Zhang L, Han G, Zhao K, Liu Y, Zhang Z. 2013b. Development of an efficient regeneration and Agrobacterium-mediated transformation system in crab apple (Malus micromalus) using cotyledons as explants. In Vitro Cellular & Developmental Biology - Plant, 50, 1–8.
Dai H Y, Li W R, Liu J H, Liu Y X, Zhang Z H. 2011. 
Agrobacterium-mediated transformation of Malus hupehensis var. pingyiensis using cotyledon explants. Journal of Shenyang Agricultural University, 42, 663–667. (in Chinese)
Danilova S A, Dolgikh Y I. 2004. The stimulatory effect of the antibiotic cefotaxime on plant regeneration in maize tissue culture. Russian Journal of Plant Physiology, 51, 559–562.
De Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert W F. 1996. Agrobacterium-mediated transformation of apple (Malus domestica Borkh.): An assessment of factors affecting regeneration of transgenic plants. Plant Cell Reports, 15, 549–554.
Famiani F, Ferradini N, Staffolani P, Standardi A. 1994. Effect of leaf excision time and age, BA concentration and dark treatments on in vitro shoot regeneration of M.26 apple rootstock. Journal of Horticultural Science, 69, 679–685.
Fu M, Li C, Ma F. 2012. Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica, 189, 101–109.
Fu M, Ma F. 2012. Characterization of the genetic relationships among biotypes of Malus prunifolia using simple sequence repeat marker. Scientia Horticulturae, 146, 169–174.
Hewezi T, Jardinaud F, Alibert G, Kallerhoff J. 2003. A new approach for efficient regeneration of a recalcitrant genotype of sunflower (Helianthus annuus) by organogenesis induction on split embryonic axes. Plant Cell, Tissue and Organ Culture, 73, 81–86.
Igarashi M, Ogasawara H, Hatsuyama Y, Saito A, Suzuki M. 2002. 
Introduction of rolC into Marubakaidou [Malus prunifolia Borkh. var. ringo Asami Mo 84-A] apple rootstock via Agrobacterium tumefaciens. Plant Science, 163, 463–473.
Kim J B, Raemakers C, Jacobsen E, Visser R G F. 2007. Efficient production of transgenic Alstroemeria plants by 
using Agrobacterium tumefaciens. Annals of Applied Biology, 151, 401–412.
Korban S S, O’Connor P A, Elobeidy A. 1992. Effects of thidiazuron, naphthaleneacetic acid, dark incubation and genotype on shoot organogenesis from Malus leaves. Journal of Horticultural Science, 67, 341–349.
Li X, Guo Q, Han C, Li J, Dong L, Cao S, Zhang Z, Sun Y, Wang R, Li Y. 2022. Developing a highly efficient regener- ation system for leaves of tissue-cultured tetraploid Robinia pseudoacacia L. In Vitro Cellular & Developmental Biology - Plant, 58, 114–121.
Li Y, Tan Y, Shao Y, Li M, Ma F. 2015. Comprehensive genomic analysis and expression profiling of diacylglycerol 
kinase gene family in Malus prunifolia (Willd.) Borkh. Gene, 561, 225–234.
Liu Y, Chen J, Li X, Xue Y. 2020. Effect of different factors on plant regeneration from leaf explants of Jatropha curcas L. Agronomy Journal, 113, 734–745.
Liu Y, Xu J Z, Shao J Z, Gao Y. 2006. Establishment of a highly efficient regeneration system from leaves in vitro of apple dwarf stock P59. Journal of Agricultural University of Hebei, 29, 10–12. (in Chinese)
Liu Y R, Cen H F, Yan J P, Zhang Y W, Zhang W J. 2015. Inside out: High-efficiency plant regeneration and
Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars. Plant Cell Reports, 34, 1099–1108.
Mendi Y Y, Comlekcioglu N, Ipek M, Kocaman E, Izgu T, Tekdal D, Curuk P. 2010. The effect of different hormone concentrations and dark pretreatment on adventitious shoot regeneration in snake melon (Cucumis melo var. flexousus). Romanian Biotechnological Letters, 15, 5392–5395.
Merrick P, Fei S. 2015. Plant regeneration and genetic transformation in switchgrass - A review. Journal of Integrative Agriculture, 14, 483–493.
Naderi D, Askari-Khorasgani O, Mahmoudi E. 2016. Cefotaxime and benzyladenine improve melon regeneration. Iranian Journal of Biotechnology, 14, 56–60.
Ogaki M, Furuichi Y, Kuroda K, Chin D P, Ogawa Y, Mii M. 2008. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium × formolongi. Plant Cell Reports, 27, 699–705.
Seong E S, Song K J. 2007. Factors affecting the early gene transfer step in the development of transgenic ‘Fuji’ apple plants. Plant Growth Regulation, 54, 89–95.
Sun Y L, Hong S K. 2012. Agrobacterium tumefaciens- mediated transformation of the halophyte Leymus chinensis (Trin.). Plant Molecular Biology Reporter, 30, 1253–1263.
Tan Y, Li M, Yang Y, Sun X, Wang N, Liang B, Ma F. 2017. Overexpression of MpCYS4, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., enhances stomatal 
closure to confer drought tolerance in transgenic Arabidopsis and apple. Frontiers in Plant Science, 8 ,33.
Tan Y, Qin Y, Li Y, Li M, Ma F, 2014. Overexpression of
MpGR-RBP1, a glycine-rich RNA-binding protein gene from Malus prunifolia (Willd.) Borkh., confers salt stress tolerance and protects against oxidative stress in Arabidopsis. Plant Cell, Tissue and Organ Culture, 119, 635–646.
Tiwari N N, Singh R K, Singh S P. 2018. Impact of cefotaxime on Agrobacterium mediated BT gene transformation in sugarcane. Pharmacogn Phytochem, 7, 3952–3955.
Wang S, Ku S S, Ye X, He C, Kwon S Y, Choi P S. 2015. 
Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.). Journal of Integrative Agriculture, 14, 469–482.
Wang S, Liang D, Shi S, Ma F, Shu H, Wang R. 2010. Isolation and characterization of a novel drought responsive 
gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Molecular Biology Reporter, 29, 125–134.
Wang Y, Xu X F, Li T Z, Han Z H. 2005. Tissue culture and rapid propagation of leaves of Malus xiaojinensis Cheng et. Jiang. Plant Physiology Communications, 41, 789. (in Chinese) 
Welander M. 1988. Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. Journal of Plant Physiology, 132, 738–744.
Wu J, Kong J, Wang Y, Han Z H, Xu X F. 2008. Agrobacterium rhizogenes-mediated transformation and hairy root regeneration of Malus baccata (L.) Borkh. Acta Horticulturae Sinica, 35, 959–966. (in Chinese)
Wu R G, Yang H Q, Ran K, Zhang W W. 2012. The regeneration system establishment of the cotyledons of Malus sikkimensis. Plant Physiology Journal, 48, 1011–1014. (in Chinese)
Wu Y, Li Y, Wu Y, Cheng H, Li Y, Zhao Y, Li Y. 2011. Transgenic plants from fragmented shoot tips of apple (Malus baccata (L.) Borkhausen) via Agrobacterium-mediated transformation. Scientia Horticulturae, 128, 450–456.
Xu Y W, Jian W Z, Zou Y T, Husaini A M, Wu W. 2011. Combined effect of dark and wounding on regeneration potential of Houttuynia cordata Thunb. leaves. Indian Journal of Experimental Biology, 49, 540–546.
Yang Y, Zhang Z, Liu Y, He P, Zhao G. 2010. Establishment of Agrobacterium tumefaciens-mediated transformation system for Hanfu apple. Journal of Fruit Science, 27, 174–178. (in Chinese)
Yepes L M, Aldwinekle H S. 1994. Factors that effect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell, Tissue and Organ Culture, 37, 257–269.
Yu Y, Liu D, Liu C, Yan Z, Yang X, Feng G. 2021. In vitro regeneration of Phaseolus vulgaris L. via direct and indirect organogenesis. Plant Biotechnology Reports, 15, 279–288.
Yuan L X, Wang J X, Sun Y, Zhong D J, Quan L G, Hu L Y. 2006. Effect of processing time on the transformation efficiency of Brassica oleracea mediated by Agrobacterium tumefaciens. Shandong Agricultural Sciences, (2), 27–29. (in Chinese)
Zhang J, Wang X, Feng Z, Geng X, Mu S, Huo H, Tong H, Li M, Li Y, Chi Y, Chen Y. 2016. In vitro establishment of a highly effective method of castor bean (Ricinus communis L.) regeneration using shoot explants. Journal of Integrative Agriculture, 15, 1417–1422.
Zhang X, Wu Y, Li Z, Song C, Wang X. 2021. Advancements in plant regeneration and genetic transformation of grapevine (Vitis spp.). Journal of Integrative Agriculture, 20, 1407–1434.
Zhang Y, Bozorov T A, Li D X, Zhou P, Wen X J, Ding Y, Zhang D Y. 2020. An efficient in vitro regeneration system from different wild apple (Malus sieversii) explants. Plant Methods, 16, 56.
Zhang Y, Qin C, Liu S, Xu Y, Li Y, Zhang Y, Song Y, Sun M, Fu C, Qin Z, Dai S. 2021. Establishment of an efficient Agrobacterium-mediated genetic transformation system in halophyte Puccinellia tenuiflora. Molecular Breeding, 41, 55.
Zhang Z, Zhang J, Tang Z, Wang Y, Gao T, Liu X, Ma F, Li C. 2022. Tissue distribution and changes in dopamine during development and stress responses in Malus germplasm. Journal of Integrative Agriculture, 21, 710–724.
Zhu L H, Ahlman A A, Li X Y, Welander M M. 2001a. Integration
of the rolA gene into the genome of the vigorous apple
rootstock A2 reduced plant height and shortened internodes. Journal of Pomology Horticultural Science, 76, 758–763.
Zhu L H, Holefors A, Ahlman A, Xue Z T, Welander M. 2001b. Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Science, 160, 433–439.
Zhu W, Liu H, Huang J, Li J, Wu C, Yang J, Liang G. 2010. Transform gene PuNHA into Malus robusta Rehd. Northern Horticulture, (4), 121–124. (in Chinese)

No related articles found!
No Suggested Reading articles found!