Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4920-4935.doi: 10.3864/j.issn.0578-1752.2025.23.009

• RESEARCH AND DEVELOPMENT OF TECHNOLOGY FOR ENHANCED PRODUCTIVITY • Previous Articles     Next Articles

Effect of Growth Regulators on the Stem Characteristics and Yield of Summer Maize in Maize-Soybean Strip Intercropping

GAO ChunHua1(), ZHAO HaiJun1, ZHAO FengTao1, KONG WeiLin2, JU FeiYan1, LI ZongXin3, SHI DeYang4, LIU Ping2,*()   

  1. 1 Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100
    2 State Key Laboratory of Nutrient Use and Management/Key Laboratory of Agro-Environment in Huang-Huai-Hai Plain/Institute of Agricultural Resources and Environment, Jinan 250100
    3 Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100
    4 Institute of Grain and Oil Crops, Shandong Yantai Agricultural Research Institute, Yantai 265500, Shandong
  • Received:2025-04-28 Accepted:2025-07-25 Online:2025-12-01 Published:2025-12-09
  • Contact: LIU Ping

Abstract:

【Objective】 This study clarified the physiological basis of the effects of growth regulators on the stem characteristics and yield of summer maize under maize-soybean strip intercropping, with the aim of providing the technical support and theoretical basis for improving the lodging resistance of summer maize and ensuring stable and high yield in the intercropping system. 【Method】 In 2023-2024, using maize variety of Denghai 605, soybean varieties of Heidou 22 and Andou 203 as test materials, under the strip intercropping pattern of 4 rows of maize and 6 rows of soybeans, six treatments were designed (CK, treatment with water; T1, 300 mg·L-1 ethepene+0.03 mg·L-12, 4-epibrassinolide; T2, 300 mg·L-1 ethepene+0.03 mg·L-1 aminosterol; T3, 300 mg·L-1 ethylene glycol+0.03 mg·L-1 2, 4-epibrassinolide+0.03 mg·L-1 aminosterol; T4, 300 mg·L-1 ethylene glycol+2 g·L-1 chlorpyritin+ 0.03 mg·L-1 2, 4-epibrassinolide; T5, 300 mg·L-1 ethoxylenol+2 g·L-1 chlorpyritin+0.03 mg·L-1 2, 4-epibrassinolide +0.03 mg·L-1 aminosterol) at the V7 (7-leaf) stage. The maize plants were sprayed with either water or different combinations of these growth regulators. The effects of various combination treatments on the morphology of intercropped maize plants, lignin, hemicellulose, and cellulose content in the third internode from the base, as well as on yield, were investigated. 【Result】 Compared with CK, the application of growth regulators increased the stem diameter, lignin, cellulose, and hemicellulose content in the maize third internode from the base, while reducing maize plant height and length of the third internode, thus improving the lodging resistance of intercropped maize. In addition, the growth regulators increased the leaf area index (LAI), number of ears per hectare, and ear tip length of maize, while reducing its plant height, ear length, number of kernels per ear, 1000-grain weight, and grain yield in the maize-soybean strip intercropping system. The decrease in yield was primarily due to the reduction in the number of kernels per ear and thousand kernel weight caused by the growth regulators. The T3 and T5 treatments had higher leaf area index, stem diameter, and lignin content in the third internode, with a yield reduction of 0.38%-1.53% (T3) and 1.40%-3.03% (T5), indicating that the combination treatments of ethephon, 2,4-epibrassinolide, and aminocyclopropane carboxylic acid (T3 and T5) were beneficial to maize yield formation in the intercropping system. 【Conclusion】 After the application of growth regulators, the stem diameter and lignin content of intercropped maize in the maize-soybean strip intercropping system increased, resulting in enhanced lodging resistance. Under the experimental conditions, the combination of ethephon (300 mg·L-1), 2,4-epibrassinolide (0.03 mg·L-1), and aminocyclopropane carboxylic acid (0.03 mg·L-1) was found to be the most effective growth regulator formulation for improving the lodging resistance of maize stalks in the maize-soybean strip intercropping system while conducive to the stable yield of intercropping maize.

Key words: maize-soybean strip intercropping, growth regulators, summer maize, stem characteristics, yield

Table 1

Overview and the base soil fertility in 0-20 cm soil layer of the test sites in Huantai and Laizhou"

试验地点
Experiment site
有机质
Organic
matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
碱解氮
Alkaline nitrogen
(mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
速效钾
Available potassium
(g·kg-1)
年均降水量
Average annual precipitation
(mm)
年均气温
Average annual temperature
(℃)
年均日照
Average
annual sunshine duration (h)
桓台Huantai 14.6 0.99 93.50 46.95 112.34 586.40 13.40 2832.0
莱州Laizhou 10.3 0.89 91.50 50.65 106.15 729.20 11.81 2672.2

Fig. 1

Layout diagram of field trial planting"

Fig. 2

Effect of growth regulators on the plant height of intercropped maize"

Fig. 3

Effects of growth regulators on the ear height of intercropped maize"

Fig. 4

Effects of growth regulators on the center of gravity height of intercropped maize"

Table 2

Effects of growth regulators on stem diameter and internode length of the third internode of intercropped maize base"

地点
Site
年份
Year
处理
Treatment
茎粗Stem diameter 节间长Internode length
抽雄期
Tasseling stage
乳熟期
Milking stage
成熟期
Maturity stage
抽雄期
Tasseling stage
乳熟期
Milking stage
成熟期
Maturity stage
莱州
Laizhou
2023 CK 19.09±0.02c 19.80±0.14e 17.54±0.27d 12.27±0.15a 13.90±0.53a 14.60±0.10a
T1 20.37±0.68b 21.62±0.45bc 18.83±0.39c 9.30±0.20c 10.30±0.26d 11.33±0.15c
T2 20.84±0.21b 21.12±0.06c 18.93±0.14bc 9.33±0.15c 11.20±0.26c 11.50±0.10c
T3 22.04±0.78a 22.87±0.24a 20.93±0.41a 10.17±0.15b 12.13±0.15b 12.27±0.06b
T4 20.87±0.86b 20.60±0.56d 19.04±0.03bc 8.07±0.12d 9.17±0.21e 9.83±0.15e
T5 21.14±0.20a 21.98±0.34b 19.45±0.42b 9.43±0.15c 10.20±0.26d 10.77±0.15d
2024 CK 19.08±0.59e 19.79±0.14d 17.41±0.16e 13.03±0.06a 13.80±0.10a 14.07±0.15a
T1 20.07±0.08d 20.42±0.05c 18.42±0.09d 10.17±0.29d 11.17±0.15c 11.77±0.15c
T2 21.44±0.37b 21.52±0.18b 19.93±0.07b 10.60±0.10c 11.37±0.15c 11.87±0.15c
T3 22.37±0.39a 22.70±0.32a 20.75±0.06a 11.73±0.12b 12.07±0.21b 12.70±0.10b
T4 19.38±0.24e 19.76±0.17e 17.55±0.13e 9.33±0.15e 9.77±0.21e 10.10±0.20e
T6 20.80±0.15c 21.51±0.49c 18.99±0.28c 10.30±0.10d 10.73±0.15d 11.13±0.15d
桓台
Huantai
2024 CK 18.83±0.51d 19.81±0.27c 16.78±0.20e 13.20±0.20a 14.17±0.25a 14.70±0.44a
T1 20.98±0.73b 21.24±0.32b 18.96±0.74c 10.60±0.10d 11.07±0.15d 11.63±0.21c
T2 21.81±0.33ab 21.84±0.74ab 19.70±0.34b 10.10±0.10e 10.60±0.10e 11.13±0.21d
T3 22.55±0.47a 22.83±1.14a 20.43±0.26a 11.80±0.10b 12.30±0.10b 12.83±0.06b
T4 19.91±0.76c 20.96±1.16bc 17.84±0.22d 9.73±0.15f 9.97±0.12f 10.20±0.10e
T6 21.14±0.20b 21.98±0.34ab 19.13±0.13bc 11.40±0.20c 11.40±0.20c 11.73±0.15c
F值
F value
年份 Year 0.47 2.64 0.73 73.58** 4.23 2.11
处理 Treatment 8.55* 14.02** 8.28* 73.98** 59.75** 62.75**
年份×处理 Year×Treatment 3.66* 5.33** 15.76** 6.12** 3.84* 10.7**
地点 Site 4.96 7.39* 0.04 1.68 0.25 0.23
处理 Treatment 44.78** 23.36** 35.88** 23.37* 32.69** 32.33**
地点×处理 Site×Treatment 1.08 0.92 3.49* 17.92** 13.35** 10.13**

Fig. 5

Effect of growth regulators on the content of lignin in the basal third internode"

Fig. 6

Effect of growth regulators on the content of internode hemicellulose in the basal third internode"

Fig. 7

Effects of growth regulators on the content of cellulose in the basal third internode"

Fig. 8

Effects of growth regulators on leaf area index of intercropping maize at different growth stages"

Table 3

Effects of growth regulators on ear traits of intercropped maize base"

地点
Site
年份
Year
处理
Treatment
穗粗
Ear diameter (mm)
轴粗
Kernels per spike (mm)
穗长
Ear length (cm)
秃尖长
Barren ear tip (cm)
莱州
Laizhou
2023 CK 52.21±0.51a 27.04±2.38a 17.85±1.49a 2.06±0.36c
T1 51.51±0.80a 25.97±1.21ab 16.50±1.80b 2.12±0.15b
T2 50.73±0.93a 25.86±0.93ab 16.86±1.36b 2.18±0.16b
T3 51.39±0.95a 25.74±1.14b 15.80±1.65c 2.16±0.21b
T4 51.39±1.54a 26.07±0.54b 16.15±1.76bc 2.30±0.19a
T5 51.03±1.28a 25.12±0.51b 16.72±0.94b 2.32±0.13a
2024 CK 51.19±1.24a 26.80±1.29a 17.49±0.96a 2.02±0.33c
T1 50.87±2.15a 25.44±0.81a 16.30±1.03b 2.27±0.16b
T2 51.89±2.22a 25.55±0.74a 15.98±1.06b 2.18±0.17b
T3 49.30±3.65a 25.74±1.58a 16.31±0.96b 2.09±0.39bc
T4 51.28±1.96a 26.09±1.17a 15.90±0.50b 2.44±0.21a
T5 51.09±1.79a 25.69±1.10a 16.48±0.80b 2.15±0.20d
桓台
Huantai
2024 CK 47.20±0.03a 25.68±0.24a 17.53±0.45a 2.20±0.05c
T1 45.67±0.05c 25.02±0.04b 16.44±0.17b 2.61±0.10a
T2 45.52±0.08c 24.66±0.16b 16.03±0.15bc 2.26±0.03c
T3 46.32±0.20b 23.72±0.08c 14.71±0.54d 2.53±0.02b
T4 44.50±0.11d 23.83±0.53c 15.48±0.07c 2.62±0.14a
T5 44.39±0.06d 23.29±0.08d 16.33±0.44b 2.46±0.39b
F值
F value
年份 Year 2.27 0.27 0.98 0.02
处理 Treatment 0.64 7.78 7.36* 4.33
年份×处理 Year×Treatment 1.64 0.35* 0.63 1.23
地点 Site 103.26* 1869.18** 1.31 21.92**
处理 Treatment 1.31 12.78 4.85 5.21*
地点×处理 Site×Treatment 2.28 0.01 3.01* 6.50**

Table 4

Effects of growth regulators on intercropping maize yield and its constituent factors"

地点
Site
年份
Year
处理
Treatment
产量
Grain yield (kg·hm-2)
穗数
Ear number (ears/hm2)
穗粒数
Grain number per ear
千粒重
1000-grain weight (g)
莱州
Laizhou
2023 CK 9227.70±258.33a 53564.37±961.54b 525.07±6.66a 322.40±27.10a
T1 8744.64±83.92b 54807.97±555.15b 505.93±5.78c 315.64±19.11b
T2 8630.10±209.60b 56731.05±961.54b 512.47±8.60b 316.14±16.97b
T3 9192.34±132.61a 60064.43±555.15a 522.13±5.57a 304.82±9.55b
T4 8434.26±214.29b 54807.97±961.54b 505.33±22.59c 314.66±4.02b
T5 9094.60±150.65a 62500.31±961.54a 513.00±12.40b 298.18±9.54b
2024 CK 8677.19±311.97a 63141.34±1110.29b 436.67±32.35a 324.27±6.76a
T1 8283.18±163.40c 64102.88±555.15b 427.11±65.81b 305.47±6.85b
T2 8470.70±139.22b 64423.40±961.54b 430.22±55.49b 312.13±5.59b
T3 8523.47±227.86a 65705.46±555.15a 428.67±49.94b 316.37±4.39b
T4 8206.61±158.53c 62179.80±555.15c 423.78±42.99b 313.57±4.99b
T5 8504.49±45.61a 66346.49±961.54a 396.44±116.22c 312.13±4.99b
桓台
Huantai
2024 CK 8746.92±159.26a 63461.86±555.15b 448.87±4.36a 320.33±0.23a
T1 8100.28±133.75b 63782.37±1468.78b 428.93±0.74c 312.23±1.24b
T2 8533.38±143.75a 63461.86±961.54b 43033±3.74c 309.13±0.64b
T3 8612.70±117.24a 65064.43±1110.30a 440.20±2.29b 299.17±5.87b
T4 7992.54±166.37b 63461.86±1665.44b 423.80±2.19c 297.57±1.59b
T5 8481.74±98.67a 65384.94±0a 439.47±4.09b 304.90±3.92b
F值
F value
年份 Year 27.85* 65.52** 249.94** 1.00
处理 Treatment 5.54* 5.10* 1.71 22928.65**
年份×处理 Year×Treatment 1.90 9.15** 3.50* 0.00
地点 Site 0.36 0.34 4.06 4.27
处理 Treatment 12.16* 7.32* 1.92 0.87
地点×处理 Site×Treatment 1.01 1.07 3.00* 7.00**
[4]
YANG F, WANG X C, LIAO D P, LU F Z, GAO R C, LIU W G, YONG T W, WU X L, DU J B, LIU J, YANG W Y. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agronomy Journal, 2015, 107(1): 296-304.

doi: 10.2134/agronj14.0263
[5]
DU J B, HAN T F, GAI J Y, YONG T W, SUN X, WANG X C, YANG F, LIU J, SHU K, LIU W G, YANG W Y. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 2018, 17(4): 747-754.

doi: 10.1016/S2095-3119(17)61789-1
[6]
BERDJOUR A, DUGJE I Y, DZOMEKU I K, RAHMAN N A. Maize-soybean intercropping effect on yield productivity, weed control and diversity in northern Ghana. Weed Biology and Management, 2020, 20(2): 69-81.

doi: 10.1111/wbm.v20.2
[7]
严旖旎, 单海勇, 刘旭杰, 张晋, 石晓旭, 石吕, 刘建, 杨美英. 生长调节剂对大豆-玉米间作模式中玉米产量和抗倒性的影响. 核农学报, 2024, 38(9): 1805-1813.

doi: 10.11869/j.issn.1000-8551.2024.09.1805
YAN Y N, SHAN H Y, LIU X J, ZHANG J, SHI X X, SHI L, LIU J, YANG M Y. Effect of growth regulators on maize yield and lodging resistance in soybean-maize intercropping system. Journal of Nuclear Agricultural Sciences, 2024, 38(9): 1805-1813. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2024.09.1805
[8]
张庆娜, 邵广忠, 孙殷会, 程娟, 傅迎军, 孟祥海, 胡颖慧, 王佰成. 种植密度对玉米茎秆抗倒伏性能及产量的影响. 黑龙江农业科学, 2023(7): 1-6.
ZHANG Q N, SHAO G Z, SUN Y H, CHENG J, FU Y J, MENG X H, HU Y H, WANG B C. Effects of planting density on lodging resistance and yield of maize. Heilongjiang Agricultural Sciences, 2023(7): 1-6. (in Chinese)
[9]
QI B Q, HU J, ZHU L B, DUAN Y Y, ZHANG W F, GOU L. Response of maize stalk to plant density on cellulose accumulation by modulating enzymes activities. Field Crops Research, 2023, 304: 109152.

doi: 10.1016/j.fcr.2023.109152
[10]
金容, 李钟, 李仕伟, 夏清清, 杨云, 王鹏, 姚平, 蒲全波, 郑祖平. 种植密度对四川丘陵区玉米抗倒粒收的影响. 中国农学通报, 2023, 39(18): 1-10.

doi: 10.11924/j.issn.1000-6850.casb2022-0541
JIN R, LI Z, LI S W, XIA Q Q, YANG Y, WANG P, YAO P, PU Q B, ZHENG Z P. Effect of planting density on anti-lodging mechanical grain harvesting of maize in Sichuan hilly areas. Chinese Agricultural Science Bulletin, 2023, 39(18): 1-10. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-0541
[11]
JIANG L, ZHANG J Z, CHEN D. Relationship between yield and lodging traits of maize under different planting densities. Agronomy Journal, 2022, 114(4): 2140-2146.

doi: 10.1002/agj2.v114.4
[12]
冯尚宗, 王世伟, 彭美祥, 刘宁, 赵桂涛. 不同种植密度对夏玉米产量、叶面积指数和干物质积累的影响. 江西农业学报, 2015, 27(3): 1-5, 22.
FENG S Z, WANG S W, PENG M X, LIU N, ZHAO G T. Effects of different planting densities on grain yield, LAI and dry matter accumulation of summer maize. Acta Agriculturae Jiangxi, 2015, 27(3): 1-5, 22. (in Chinese)
[13]
黄海. 群体密度对玉米茎秆及根系抗倒伏特性的影响[D]. 长春: 吉林农业大学, 2013.
HUANG H. Effects of population density on lodging-resistance characteristic of stalk and root in maize. Changchun: Jilin Agricultural University, 2013. (in Chinese)
[14]
张子学, 崔保田, 牛峰, 李文阳. 密度、行距配置对夏玉米部分农艺性状及产量的影响. 安徽科技学院学报, 2016, 30(5): 8-11.
ZHANG Z X, CUI B T, NIU F, LI W Y. Effects of density, row spacing on some agronomic traits and yield of summer maize. Journal of Anhui Science and Technology University, 2016, 30(5): 8-11. (in Chinese)
[15]
韩文斌, 吴海英, 于晓波, 梁建秋, 杨鹏, 张明荣. 玉米套作大豆高产高效栽培技术. 大豆科技, 2015(2): 56-57.
HAN W B, WU H Y, YU X B, LIANG J Q, YANG P, ZHANG M R. High yield and high efficiency cultivation technology of corn intercropping soybean. Soybean Science & Technology, 2015(2): 56-57. (in Chinese)
[16]
孙晓楠. 大豆—玉米垄作间作对间作系统生理生态及后茬小麦赤霉病的影响[D]. 合肥: 安徽农业大学, 2018.
SUN X N. Effects of soybean and maize ridge intercropping on Physiology and Ecology of intercropping system and Wheat scab[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)
[17]
耿文杰, 李宾, 任佰朝, 赵斌, 刘鹏, 张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控. 中国农业科学, 2022, 55(2): 307-319. doi:10.3864/j.issn.0578-1752.2022.02.006.
GENG W J, LI B, REN B Z, ZHAO B, LIU P, ZHANG J W. Regulation mechanism of planting density and spraying ethephon on lignin metabolism and lodging resistance of summer maize. Scientia Agricultura Sinica, 2022, 55(2): 307-319. doi:10.3864/j.issn.0578-1752.2022.02.006. (in Chinese)
[18]
樊海潮, 顾万荣, 杨德光, 尉菊萍, 朴琳, 张倩, 张立国, 杨秀红, 魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响. 作物学报, 2018, 44(6): 909-919.

doi: 10.3724/SP.J.1006.2018.00909
FAN H C, GU W R, YANG D G, YU J P, PIAO L, ZHANG Q, ZHANG L G, YANG X H, WEI S. Effect of chemical regulators on physical and chemical properties and lodging resistance of spring maize stem in Northeast China. Acta Agronomica Sinica, 2018, 44(6): 909-919. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00909
[19]
BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.

pmid: 14503002
[20]
GONG L S, QU S J, HUANG G M, GUO Y L, ZHANG M C, LI Z H, ZHOU Y Y, DUAN L S. Improving maize grain yield by formulating plant growth regulator strategies in North China. Journal of Integrative Agriculture, 2021, 20(2): 622-632.

doi: 10.1016/S2095-3119(20)63453-0
[21]
AHMAD I, KAMRAN M, ALI S, BILEGJARGAL B, CAI T, AHMAD S, MENG X P, SU W N, LIU T N, HAN Q F. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 2018, 222: 66-77.

doi: 10.1016/j.fcr.2018.03.015
[22]
GENG W J, SUN Z C, REN B Z, REN H, ZHAO B, LIU P, ZHANG J W. Spraying ethephon effectively increased canopy light transmittance of densely planted summer maize, thus achieving synergistic improvement in stalk lodging resistance and grain yield. Plants, 2022, 11(17): 2219.

doi: 10.3390/plants11172219
[23]
GAO Z, LIANG X G, ZHANG L, LIN S, ZHAO X, ZHOU L L, SHEN S, ZHOU S L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Research, 2017, 211: 1-9.

doi: 10.1016/j.fcr.2017.05.027
[24]
WANG L F, YAN Y N, LU W P, LU D L. Application of exogenous phytohormones at silking stage improve grain quality under post- silking drought stress in waxy maize. Plants, 2021, 10(1): 48.

doi: 10.3390/plants10010048
[25]
KAMRAN M, CUI W W, AHMAD I, MENG X P, ZHANG X D, SU W N, CHEN J Z, AHMAD S, FAHAD S, HAN Q F, LIU T N. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regulation, 2018, 84(2): 317-332.

doi: 10.1007/s10725-017-0342-8
[3]
LIU Y, HOU T R, GUO X P, LIU J G, BAI X H, DONG G H, DONG S T, KONG X M, JIA C L, WU M Q, ZHANG J W. Analysis of development status and countermeasures of corn industry in Shandong Province. Journal of Shandong Agricultural University (Social Science Edition), 2017, 19(2): 24-30. (in Chinese)
刘洋, 侯廷荣, 郭新平, 柳京国, 白星焕, 董国豪, 董树亭, 孔晓民, 贾春兰, 吴明泉, 张吉旺. 山东省玉米产业发展现状与对策分析. 山东农业大学学报(社会科学版), 2017, 19(2): 24-30.
[2]
ZHAI T, WU L. Study on development situation and revitalization strategy of soybean industry in China from an open perspective. Soybean Science, 2020, 39(3): 472-478. (in Chinese)
翟涛, 吴玲. 开放视角下中国大豆产业发展态势与振兴策略研究. 大豆科学, 2020, 39(3): 472-478.
[1]
WANG Y, LI G Q, YU W, FENG Y, ZHONG X, LIU R, XU S W. Present situation and prospect of soybean production in China. Hubei Agricultural Sciences, 2020, 59(21): 201-207. (in Chinese)
王禹, 李干琼, 喻闻, 冯瑶, 钟鑫, 刘然, 许世卫. 中国大豆生产现状与前景展望. 湖北农业科学, 2020, 59(21): 201-207.
[26]
VAN SOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597.

doi: 10.3168/jds.S0022-0302(91)78551-2 pmid: 1660498
[27]
任佰朝, 张吉旺, 董树亭, 赵斌, 刘鹏. 生育前期淹水对夏玉米冠层结构和光合特性的影响. 中国农业科学, 2017, 50(11): 2093-2103. doi:10.3864/j.issn.0578-1752.2017.11.015.
REN B Z, ZHANG J W, DONG S T, ZHAO B, LIU P. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2093-2103. doi:10.3864/j.issn.0578-1752.2017.11.015. (in Chinese)
[28]
徐田军, 吕天放, 陈传永, 刘月娥, 张译天, 刘秀芝, 赵久然, 王荣焕. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控. 中国农业科学, 2019, 52(4): 629-638. doi:10.3864/j.issn.0578-1752.2019.04.005.
XU T J, T F, CHEN C Y, LIU Y E, ZHANG Y T, LIU X Z, ZHAO J R, WANG R H. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation. Scientia Agricultura Sinica, 2019, 52(4): 629-638. doi:10.3864/j.issn.0578-1752.2019.04.005. (in Chinese)
[29]
XIE S P, HUANG G M, LIU Y R, GUO Y L, PENG C X, LI Z H, ZHOU Y Y, DUAN L S. Sensitivity of maize genotypes to ethephon across different climatic zones. Environmental and Experimental Botany, 2023, 215: 105487.

doi: 10.1016/j.envexpbot.2023.105487
[30]
张佳琪, 王明杰, 谢世兴, 武敏桦, 卢海博, 赵海超, 黄智鸿. 化控剂玉黄金对春玉米抗倒伏性状及产量的影响. 安徽农业科学, 2023, 51(9): 132-135, 163.
ZHANG J Q, WANG M J, XIE S X, WU M H, LU H B, ZHAO H C, HUANG Z H. Effect of chemical regulator of Yuhuangjin on lodging resistance and yield of spring maize. Journal of Anhui Agricultural Sciences, 2023, 51(9): 132-135, 163. (in Chinese)
[31]
王明杰, 张佳琪, 武敏桦, 俞新华, 张凯旋, 卢海博, 赵海超, 黄智鸿. 30%胺鲜酯·乙烯利水剂(玉黄金)对密植春玉米茎折强度及生理特性的影响. 江苏农业科学, 2022, 50(20): 101-107.
WANG M J, ZHANG J Q, WU M H, YU X H, ZHANG K X, LU H B, ZHAO H C, HUANG Z H. Effects of 30% aminoacyl Easter and ethylene water agent(Yuhuangjin)on stem fold strength and physiological characteristics of densely planted spring maize. Jiangsu Agricultural Sciences, 2022, 50(20): 101-107. (in Chinese)
[32]
田再民, 黄智鸿, 赵海超, 卢海博, 陈宗政, 陈建新, 史宝林, 魏东. 玉黄金化控对不同种植密度下玉米抗倒伏性和产量构成因素的影响. 河北农业科学, 2019, 23(5): 51-55, 82.
TIAN Z M, HUANG Z H, ZHAO H C, LU H B, CHEN Z Z, CHEN J X, SHI B L, WEI D. Effects of chemical control with 30% diethyl aminoethyl Hexanoate·Ethephon AS on lodging resistance and yield components of maize under different planting densities. Journal of Hebei Agricultural Sciences, 2019, 23(5): 51-55, 82. (in Chinese)
[33]
郑云霄, 刘文斯, 赵永锋, 贾晓艳, 祝丽英, 黄亚群, 陈景堂, 郭晋杰. 玉米种质资源的抗倒伏性评价及鉴定指标筛选. 植物遗传资源学报, 2019, 20(6): 1588-1596.

doi: 10.13430/j.cnki.jpgr.20190418001
ZHENG Y X, LIU W S, ZHAO Y F, JIA X Y, ZHU L Y, HUANG Y Q, CHEN J T, GUO J J. Evaluation of lodging resistance and selection of identification indexes of maize germplasm resources. Journal of Plant Genetic Resources, 2019, 20(6): 1588-1596. (in Chinese)
[34]
刘志铭, 盖旭东, 李宝玉, 兰天娇, 孙宝龙, 吕艳杰. 化控对高密度春玉米抗倒伏能力及产量的影响. 东北农业科学, 2019, 44(6): 1-5.
LIU Z M, GAI X D, LI B Y, LAN T J, SUN B L, Y J. Effect of chemical regulators on lodging resistance and yield of spring maize under high density conditions. Journal of Northeast Agricultural Sciences, 2019, 44(6):1-5. (in Chinese)
[35]
郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响. 作物学报, 2021, 47(4): 738-751.

doi: 10.3724/SP.J.1006.2021.03044
ZHENG Y X, CHEN D, WEI P C, LU P, YANG J Y, LUO S K, YE K M, SONG B. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou Province. Acta Agronomica Sinica, 2021, 47(4): 738-751. (in Chinese)

doi: 10.3724/SP.J.1006.2021.03044
[36]
徐宇, 孔祥清, 付迪, 白薇. 化控剂密高对玉米抗倒伏性的影响. 黑龙江八一农垦大学学报, 2015, 27(6): 10-14.
XU Y, KONG X Q, FU D, BAI W. Effects of chemical regulator, migao on resistance to lodging. Journal of Heilongjiang Bayi Agricultural University, 2015, 27(6): 10-14. (in Chinese)
[37]
MANGA-ROBLES A, SANTIAGO R, MALVAR R A, MORENO- GONZÁLEZ V, FORNALÉ S, LÓPEZ I, CENTENO M L, ACEBES J L, ÁLVAREZ J M, CAPARROS-RUIZ D, ENCINA A, GARCÍA- ANGULO P. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Science, 2021, 307: 110882.

doi: 10.1016/j.plantsci.2021.110882
[38]
佘恒志, 聂姣, 李英双, 刘星贝, 胡丹, 马珊, 次仁卓嘎, 汪灿, 吴东倩, 阮仁武, 易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征. 中国农业科学, 2017, 50(7): 1202-1209. doi:10.3864/j.issn.0578-1752.2017.07.003.
SHE H Z, NIE J, LI Y S, LIU X B, HU D, MA S, CI R, WANG C, WU D Q, RUAN R W, YI Z L. Lignin and lignin monomer synthetic characteristics of culm in common buckwheat with different lodging resistance capabilities. Scientia Agricultura Sinica, 2017, 50(7): 1202-1209. doi:10.3864/j.issn.0578-1752.2017.07.003. (in Chinese)
[39]
侯佳敏, 罗宁, 王溯, 孟庆锋, 王璞. 增密对我国玉米产量-叶面积指数-光合速率的影响. 中国农业科学, 2021, 54(12): 2538-2546. doi:10.3864/j.issn.0578-1752.2021.12.005.
HOU J M, LUO N, WANG S, MENG Q F, WANG P. Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China. Scientia Agricultura Sinica, 2021, 54(12): 2538-2546. doi:10.3864/j.issn.0578-1752.2021.12.005. (in Chinese)
[40]
张明达, 张国强, 王克如, 谢瑞芝, 侯鹏, 明博, 薛军, 李少昆. 种植密度和灌溉量对西辽河平原春玉米产量及水分利用效率的影响. 玉米科学, 2023, 31(1): 116-125.
ZHANG M D, ZHANG G Q, WANG K R, XIE R Z, HOU P, MING B, XUE J, LI S K. Effects of planting density and irrigation amount on yield and water use efficiency of spring maize in the west Liaohe Plain. Journal of Maize Sciences, 2023, 31(1): 116-125. (in Chinese)
[41]
何海涛, 孙睿, 姜文超, 尚保华, 党建友, 裴雪霞. 玉米种植密度对大豆玉米带状复合种植体系干物质养分积累与转运的影响. 核农学报, 2024, 38(7): 1365-1374.

doi: 10.11869/j.issn.1000-8551.2024.07.1365
HE H T, SUN R, JIANG W C, SHANG B H, DANG J Y, PEI X X. EEffect of corn planting density on dry matter and accumulation and transport of nutrients in strip compound planting of corn and soybean. Journal of Nuclear Agricultural Sciences, 2024, 38(7): 1365-1374. (in Chinese)

doi: 10.11869/j.issn.1000-8551.2024.07.1365
[42]
王海永, 陈小文, 牛晓雪, 苏贺, 申婷婷, 董学会. 乙烯利对夏玉米果穗生长发育影响及生理机制探究. 玉米科学, 2014, 22(5): 64-70.
WANG H Y, CHEN X W, NIU X X, SU H, SHEN T T, DONG X H. Influence of ethephon on maize cluster growth and development and the physiological mechanism. Journal of Maize Sciences, 2014, 22(5): 64-70. (in Chinese)
[43]
李玲, 赵明, 李连禄, 董志强. 乙矮合剂对玉米产量和茎秆质量的影响. 作物杂志, 2007, (5): 51-54.
LI L, ZHAO M, LI L L, DONG Z Q. Effect of ethephon and chlormequat mixture on yield and stalk quality of maize. Crops, 2007, (5): 51-54. (in Chinese)
[44]
周萍, 崔岭, 王海燕, 钱素菊, 崔亚坤, 陈艳萍, 袁建华. 大豆玉米带状复种模式下种植密度对玉米植株生长和产量的影响. 中国农学通报, 2023, 39(14): 1-5.

doi: 10.11924/j.issn.1000-6850.casb2022-1029
ZHOU P, CUI L, WANG H Y, QIAN S J, CUI Y K, CHEN Y P, YUAN J H. Effects of planting density on plant growth and yield of maize in maize-soybean strip intercropping system. Chinese Agricultural Science Bulletin, 2023, 39(14): 1-5. (in Chinese)

doi: 10.11924/j.issn.1000-6850.casb2022-1029
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!