Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4471-4481.doi: 10.3864/j.issn.0578-1752.2025.21.016

• EXPLORATION OF SALT-ALKALI AND DROUGHT RESISTANT GENES FOR ALFALFA BREEDING • Previous Articles     Next Articles

The Breeding History, Current Status and Prospects of Alfalfa

ZHANG Fan1,2(), YANG QingChuan1()   

  1. 1 Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, Guangdong
  • Received:2025-02-27 Accepted:2025-08-03 Online:2025-11-01 Published:2025-11-06
  • Contact: YANG QingChuan

Abstract:

Alfalfa (Medicago sativa subsp. sativa L.), as the world's most important leguminous forage, plays an indispensable role in modern livestock farming and ecological systems due to its high yield, superior quality, and excellent adaptability. However, China's alfalfa industry has long faced a "bottleneck" in its seed industry, primarily characterized by the insufficient innovation capacity in germplasm resources and a low supply rate of elite proprietary varieties. The root of this challenge lies not only in the relatively late start and underdeveloped technical framework of alfalfa breeding in China, but also in the complex genetic characters obstacles inherent to alfalfa itself—namely, its autotetraploid nature with high heterozygosity and a self-incompatibility mechanism. Therefore, a systematic review of alfalfa's breeding history, current research status, and a forward-looking perspective on biotechnological breeding is of significant referential value for accelerating genetic improvement in China. The history of alfalfa domestication and spread was extensive. Originating from the Transcaucasus region, it was introduced to China via the "Silk Road" and subsequently spread worldwide. The vast enrichment of its genetic diversity benefited historically from the introduction of germplasm from different geographical origins and inter/intraspecific hybridization, particularly through genetic introgression from the stress-tolerant subspecies, M. sativa subsp. falcata. This laid a solid genetic foundation for breeding varieties adapted to diverse ecological niches. Developed countries, such as the United States, have established a comprehensive system for alfalfa breeding that covered germplasm collection, evaluation, and new variety development, with a history spanning over a century. Nevertheless, even in the United States, yield improvement plateaued after 1990, revealing the potential limitations of conventional breeding strategies. Although China has made considerable progress in alfalfa breeding, successfully developing adapted varieties, such as the "Zhongmu" and "Gannong" series, the overall effort still faced significant challenges. Firstly, the number of registered varieties is relatively less (128 as of 2024, far fewer than the 1 738 in the U.S.), which severely limits the ability to select optimal varieties for China's diverse ecological environments. Secondly, conventional breeding strategies themselves have constrained the effective utilization of heterosis. Historically, breeders often employed a strategy of population mixing and recurrent selection with varieties from different geographical origins. However, this approach aggregated favorable genes to some extent, and it also led to a homogenization of the genetic backgrounds among different breeding populations, thereby diminishing the potential for generating strong heterosis through subsequent hybridization. Consequently, breaking through the limitations of traditional methods by introducing efficient modern biotechnologies has become an inevitable choice for contemporary alfalfa breeding. In recent years, modern biotechnology centered on genomics has presented unprecedented opportunities to overcome the challenges in alfalfa breeding. China has achieved notable success in foundational genomics research, completing tasks ranging from genetic analysis of germplasm resources and genetic mapping to the key molecular markers and the development of elite germplasm. These genomic resources have made it possible to dissect the genetic regulatory networks of complex traits, such as yield, quality, and stress resistance at the molecular level. Looking ahead, alfalfa breeding in China should adopt a strategy that integrates conventional breeding with modern biotechnology, transitioning from source innovation to the "Breeding 4.0" era of precision design. The integration of modern biotechnologies—including genomics, marker-assisted selection, and gene editing—to conduct precise and efficient molecular design breeding is the core pathway to resolving the "bottleneck" in China's alfalfa seed industry and achieving fast development.

Key words: alfalfa, molecular design breeding, genomics, germplasm

Fig. 1

The yield improvement of four major crops in America over the past 100 years"

Fig. 2

The alfalfa breeding strategy in different stages The different background colors correspond to the respective breeding stages indicated in the legend on the right"

[1]
杨青川, 孙彦. 中国苜蓿育种的历史、现状与发展趋势. 中国草地学报, 2011, 33(6): 95-101.
YANG Q C, SUN Y. The history, current situation and development of alfalfa breeding in China. Chinese Journal of Grassland, 2011, 33(6): 95-101. (in Chinese)
[2]
杨青川. 苜蓿种植区划及品种指南. 北京: 中国农业大学出版社, 2012.
YANG Q C. Guide for Alfalfa Planting Zone and Cultivar. Beijing: China Agricultural University Press, 2012. (in Chinese)
[3]
SMALL E. Alfalfa and Relatives:Evolution and Classification of Medicago. Ottawa: NRC Research Press, 2011.
[4]
孙启忠, 柳茜, 陶雅, 徐丽君. 张骞与汉代苜蓿引入考述. 草业学报, 2016, 25(10): 180-190.

doi: 10.11686/cyxb2015413
SUN Q Z, LIU Q, TAO Y, XU L J. Textual research of the relationship between Zhang Qian and the introduction of alfalfa to China during the Han Dynasty. Acta Prataculturae Sinica, 2016, 25(10): 180-190. (in Chinese)

doi: 10.11686/cyxb2015413
[5]
PROSPERI J M, JENCZEWSKI E, MULLER M H, FOURTIER S, SAMPOUX J P, RONFORT J. Alfalfa domestication history, genetic diversity and genetic resources. Legume Perspectives, 2014, 4: 13-14.
[6]
SMÝKAL P, COYNE C J, AMBROSE M J, MAXTED N, SCHAEFER H, BLAIR M W, BERGER J, GREENE S L, NELSON M N, BESHARAT N, et al. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 2015, 34(1/2/3): 43-104.
[7]
BOE A, KEPHART K D, BERDAHL J D, PEEL M D, BRUMMER E C, XU L, WU Y J. Breeding alfalfa for semiarid regions in the northern Great Plains: History and additional genetic evaluations of novel germplasm. Agronomy, 2020, 10(11): 1686.
[8]
QUIROS C F, BAUCHAN G R. The genus Medicago and the origin of the Medicago sativa Comp. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015: 93-124.
[9]
BARNES D K, BINGHAM E T, MURPHY R P, HUNT O J, BEARD D F, SKRDLA W H, TEUBER L R. Alfalfa germplasm in the United States: Genetic vulnerability, use, improvement, and maintenance. United Sates Department of Agricultural, 1977.
[10]
ŞAKIROĞLU M, İLHAN D. Medicago sativa species complex: Revisiting the century-old problem in the light of molecular tools. Crop Science, 2021, 61(2): 827-838.
[11]
ZHANG F, LONG R C, MA Z Y, XIAO H, XU X D, LIU Z J, WEI C X, WANG Y W, PENG Y L, YANG X W, et al. Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa. Molecular Plant, 2024, 17(6): 867-883.
[12]
MELTON B. The process of breeding new alfalfa cultivars. In Proceedings of the 1993 23rd California Alfalfa Symposium, Davis: University of California. 1993.
[13]
师尚礼, 南丽丽, 郭全恩. 中国苜蓿育种取得的成就及展望. 植物遗传资源学报, 2010, 11(1): 46-51.

doi: 10.13430/j.cnki.jpgr.2010.01.009
SHI S L, NAN L L, GUO Q E. Achievements and prospect of alfalfa breeding in China. Journal of Plant Genetic Resources, 2010, 11(1): 46-51. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2010.01.009
[14]
SHI S L, NAN L L, SMITH K F. The current status, problems, and prospects of alfalfa (Medicago sativa L.) breeding in China. Agronomy, 2017, 7(1): 1.
[15]
吴永敷, 云锦凤, 马鹤林. “草原一号” 与“草原二号” 苜蓿新品种选育. 草与畜杂志, 1987, 7(6): 37.
WU Y F, YUN J F, MA H L. Breeding of new alfalfa varieties “grassland No.1” and “grassland No.2”. China Herbivore Science, 1987, 7(6): 37. (in Chinese)
[16]
SRIWATANAPONGSE S, WILSIE C P. Intra-and intervariety crosses of Medicago sativa L. and Medicago falcata L.. Crop Science, 1968, 8(4): cropsci1968.0011183X000800040021x.
[17]
BUSBICE T H, RAWLINGS J O. Combining ability in crosses within and between diverse groups of alfalfa introductions. Euphytica, 1974, 23(1): 86-94.
[18]
BRUMMER E C. Capturing heterosis in forage crop cultivar development. Crop Science, 1999, 39(4): cropsci1999.0011183X003900040001x.
[19]
LI X H, BRUMMER E C. Applied genetics and genomics in alfalfa breeding. Agronomy, 2012, 2(1): 40-61.
[20]
ANNICCHIARICO P, BARRETT B, BRUMMER E C, JULIER B, MARSHALL A H. Achievements and challenges in improving temperate perennial forage legumes. Critical Reviews in Plant Sciences, 2015, 34(1/2/3): 327-380.
[21]
LAMB J F S, SHEAFFER C C, RHODES L H, SULC R M, UNDERSANDER D J, BRUMMER E C. Five decades of alfalfa cultivar improvement: Impact on forage yield, persistence, and nutritive value. Crop Science, 2006, 46(2): 902-909.
[22]
USDA. Crop Production Historical Track Records. United States Department of Agriculture, National Agricultural Statistics Service, 2022:1-272.
[23]
谢华玲, 杨艳萍, 董瑜, 王台. 苜蓿国际发展态势分析. 植物学报, 2021, 56(6): 740-750.

doi: 10.11983/CBB21121
XIE H L, YANG Y P, DONG Y, WANG T. Analysis on international development trends of alfalfa. Chinese Bulletin of Botany, 2021, 56(6): 740-750. (in Chinese)
[24]
刘志鹏, 刘文献, 杨青川, 张博, 王增裕, 郭振飞, 付春祥, 林浩, 张志强, 黄琳凯, 等. 我国牧草育种进展及存在问题. 中国科学基金, 2023, 37(4): 528-536.
LIU Z P, LIU W X, YANG Q C, ZHANG B, WANG Z Y, GUO Z F, FU C X, LIN H, ZHANG Z Q, HUANG L K, et al. Progress and existing problems of forage breeding in China. Bulletin of National Natural Science Foundation of China, 2023, 37(4): 528-536. (in Chinese)
[25]
AOSCA alfalfa VRB variety list index [https://aosca.org/alfalfa-index/].
[26]
吴元龙, 惠凤娇, 潘振远, 尤春源, 林海荣, 李志博, 金双侠, 聂新辉. 后基因组时代发展抗除草剂作物的机遇及挑战. 中国农业科学, 2023, 56(17): 3285-3301. doi: 10.3864/j.issn.0578-1752.2023.17.005.
WU Y L, HUI F J, PAN Z Y, YOU C Y, LIN H R, LI Z B, JIN S X, NIE X H. Opportunities and challenges for developing herbicide- resistance crops in the post-genomic era. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301. doi: 10.3864/j.issn.0578-1752.2023.17.005. (in Chinese)
[27]
YE Q Y, ZHOU C E, LIN H, LUO D, JAIN D, CHAI M F, LU Z C, LIU Z P, ROY S, DONG J L, WANG Z Y, WANG T. Medicago2035: Genomes, functional genomics, and molecular breeding. Molecular Plant, 2025, 18(2): 219-244.
[28]
YU L-X, KOLE C. The Alfalfa Genome. Cham: Springer International Publishing, 2021.
[29]
Advancing Alfalfa Breeding and Production Research [https://www.ars.usda.gov/research/annual-report-on-science-accomplishments/fy-2019/advancing-alfalfa-breeding-and-production-research/]
[30]
Alfalfa variety ratings 2025 [https://www.alfalfa.org/pdf/2025_Alfalfa_Variety_Leaflet.pdf]
[31]
BARROS J, TEMPLE S, DIXON R A. Development and commercialization of reduced lignin alfalfa. Current Opinion in Biotechnology, 2019, 56: 48-54.

doi: S0958-1669(18)30075-2 pmid: 30268938
[32]
金京波, 王台, 程佑发, 王雷, 张景昱, 景海春, 种康. 我国牧草育种现状与展望. 中国科学院院刊, 2021, 36(6): 660-665.
JIN J B, WANG T, CHENG Y F, WANG L, ZHANG J Y, JING H C, CHONG K. Current situation and prospect of forage breeding in China. Bulletin of Chinese Academy of Sciences, 2021, 36(6): 660-665. (in Chinese)
[33]
刘志鹏, 周强, 刘文献, 张吉宇, 谢文刚, 方龙发, 王彦荣, 南志标. 中国牧草育种中的若干科学问题. 草业学报, 2021, 30(12): 184-193.

doi: 10.11686/cyxb2021314
LIU Z P, ZHOU Q, LIU W X, ZHANG J Y, XIE W G, FANG L F, WANG Y R, NAN Z B. Some scientific issues of forage breeding in China. Acta Prataculturae Sinica, 2021, 30(12): 184-193. (in Chinese)
[34]
陈志宏, 李新一, 王加亭, 赵金梅. 中国苜蓿种质资源保护及创新利用. 种子, 2020, 39(5): 59-63.
CHEN Z H, LI X Y, WANG J T, ZHAO J M. Conservation and innovative utilization of alfalfa germplasm resources in China. Seed, 2020, 39(5): 59-63. (in Chinese)
[35]
CHEN H T, ZENG Y, YANG Y Z, HUANG L L, TANG B L, ZHANG H, HAO F, LIU W, LI Y H, LIU Y B, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications, 2020, 11: 2494.

doi: 10.1038/s41467-020-16338-x pmid: 32427850
[36]
SHEN C, DU H L, CHEN Z, LU H W, ZHU F G, CHEN H, MENG X Z, LIU Q W, LIU P, ZHENG L H, LI X X, DONG J L, LIANG C Z, WANG T. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant, 2020, 13(9): 1250-1261.

doi: S1674-2052(20)30216-1 pmid: 32673760
[37]
LONG R C, ZHANG F, ZHANG Z W, LI M N, CHEN L, WANG X, LIU W W, ZHANG T J, YU L X, HE F, et al. Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics & Bioinformatics, 2022, 20(1): 14-28.
[38]
LI A, LIU A, DU X, CHEN J Y, YIN M, HU H Y, SHRESTHA N, WU S D, WANG H Q, DOU Q W, et al. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Horticulture Research, 2020, 7: 194.

doi: 10.1038/s41438-020-00417-7 pmid: 33328470
[39]
SHI K, DONG H B, DU H L, LI Y X, ZHOU L, LIANG C Z, ŞAKIROĞLU M, WANG Z. The chromosome-level assembly of the wild diploid alfalfa genome provides insights into the full landscape of genomic variations between cultivated and wild alfalfa. Plant Biotechnology Journal, 2024, 22(6): 1757-1772.
[40]
LI W Y, LI X Z, LI W, YANG H B, GUO D D, GUO T, MENG Y Y, HE Q, LIN H, DU H L, NIU L F. A haplotype-resolved genome assembly of tetraploid Medicago sativa ssp. falcata. Science China Life Sciences, 2025, 68(4): 1186-1189.
[41]
CUI J W, LU Z G, WANG T Y, CHEN G, MOSTAFA S, REN H L, LIU S A, FU C X, WANG L, ZHU Y F, et al. The genome of Medicago polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Horticulture Research,2021, 810.1038: s41438-21-00483-5.
[42]
YIN M, ZHANG S Z, DU X, MATEO R G, GUO W, LI A, WANG Z Y, WU S, CHEN J Y, LIU J Q, REN G P. Genomic analysis of Medicago ruthenica provides insights into its tolerance to abiotic stress and demographic history. Molecular Ecology Resources, 2021, 21(5): 1641-1657.
[43]
WANG T Z, REN L F, LI C H, ZHANG D, ZHANG X X, ZHOU G, GAO D, CHEN R J, CHEN Y H, WANG Z L, et al. The genome of a wild Medicago species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biology, 2021, 19(1): 96.
[44]
HUANG X H, HUANG S W, HAN B, LI J Y. The integrated genomics of crop domestication and breeding. Cell, 2022, 185(15): 2828-2839.

doi: 10.1016/j.cell.2022.04.036 pmid: 35643084
[45]
ZHANG Q, QI Y Y, PAN H R, TANG H B, WANG G, HUA X T, WANG Y J, LIN L Y, LI Z, LI Y H, et al. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 2022, 54(6): 885-896.
[46]
BAO Z G, LI C H, LI G C, WANG P, PENG Z, CHENG L, LI H B, ZHANG Z Y, LI Y Y, HUANG W, et al. Genome architecture and tetrasomic inheritance of autotetraploid potato. Molecular Plant, 2022, 15(7): 1211-1226.

doi: 10.1016/j.molp.2022.06.009 pmid: 35733345
[47]
TANG D, JIA Y X, ZHANG J Z, LI H B, CHENG L, WANG P, BAO Z G, LIU Z H, FENG S S, ZHU X J, et al. Genome evolution and diversity of wild and cultivated potatoes. Nature, 2022, 606(7914): 535-541.
[48]
HE F, CHEN S, ZHANG Y Y, CHAI K, ZHANG Q, KONG W L, QU S Y, CHEN L, ZHANG F, LI M N, et al. Pan-genomic analysis highlights genes associated with agronomic traits and enhances genomics-assisted breeding in alfalfa. Nature Genetics, 2025, 57(5): 1262-1273.
[49]
HUANG X H, HAN B. Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology, 2014, 65: 531-551.

doi: 10.1146/annurev-arplant-050213-035715 pmid: 24274033
[50]
ZHANG F, KANG J M, LONG R C, YU L X, WANG Z, ZHAO Z X, ZHANG T J, YANG Q C. High-density linkage map construction and mapping QTL for yield and yield components in autotetraploid alfalfa using RAD-seq. BMC Plant Biology, 2019, 19(1): 165.

doi: 10.1186/s12870-019-1770-6 pmid: 31029106
[51]
ZHANG F, KANG J M, LONG R C, YU L X, SUN Y, WANG Z, ZHAO Z X, ZHANG T J, YANG Q C. Construction of high- density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. The Plant Genome, 2020, 13(3): e20045.
[52]
陈彩锦, 马琳, 包明芳, 张国辉, 蒋庆雪, 杨天辉, 王川, 王晓春, 高婷, 王学敏, 刘文辉. 111份紫花苜蓿种质资源萌发期抗旱性鉴定评价. 中国农业科学, 2025, 58(10): 1896-1907. doi: 10.3864/j.issn.0578-1752.2025.10.003.
CHEN C J, MA L, BAO M F, ZHANG G H, JIANG Q X, YANG T H, WANG C, WANG X C, GAO T, WANG X M, LIU W H. Identification and evaluation of drought resistance for 111 germplasm resources of alfalfa during germination stage. Scientia Agricultura Sinica, 2025, 58(10): 1896-1907. doi: 10.3864/j.issn.0578-1752.2025.10.003. (in Chinese)
[53]
ZHANG F, KANG J M, LONG R C, LI M N, SUN Y, HE F, JIANG X Q, YANG C F, YANG X J, KONG J, et al. Application of machine learning to explore the genomic prediction accuracy of fall dormancy in autotetraploid alfalfa. Horticulture Research, 2023, 10(1): uhac225.
[54]
YANG W Y, GUO T T, LUO J Y, ZHANG R Y, ZHAO J R, WARBURTON M L, XIAO Y J, YAN J B. Target-oriented prioritization: Targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding. Genome Biology, 2022, 23(1): 80.

doi: 10.1186/s13059-022-02650-w pmid: 35292095
[55]
BADUEL P, BRAY S, VALLEJO-MARIN M, KOLÁŘ F, YANT L. The “polyploid hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Frontiers in Ecology and Evolution, 2018, 6: 117.
[56]
VAN DE PEER Y, MIZRACHI E, MARCHAL K. The evolutionary significance of polyploidy. Nature Reviews Genetics, 2017, 18(7): 411-424.

doi: 10.1038/nrg.2017.26 pmid: 28502977
[57]
ADAMS K L, WENDEL J F. Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 2005, 8(2): 135-141.

doi: 10.1016/j.pbi.2005.01.001 pmid: 15752992
[58]
OTTO S P. The evolutionary consequences of polyploidy. Cell, 2007, 131(3): 452-462.
[59]
SMALL E, BAUCHAN G R. Chromosome numbers of the Medicago sativa complex in Turkey. Canadian Journal of Botany, 1984, 62(4): 749-752.
[60]
VERONESI F, BRUMMER E C, HUYGHE C. Alfalfa. Fodder Crops and Amenity Grasses, NY: Springer New York, 2010: 395-437.
[61]
PARAJULI A, YU L X, PEEL M, SEE D, WAGNER S, NORBERG S, ZHANG Z W. Self-incompatibility, inbreeding depression, and potential to develop inbred lines in alfalfa. Cham: Springer International Publishing, 2021: 255-269.
[62]
YE M W, PENG Z, TANG D, YANG Z M, LI D W, XU Y M, ZHANG C Z, HUANG S W. Generation of self-compatible diploid potato by knockout of S-RNase. Nature Plants, 2018, 4(9): 651-654.

doi: 10.1038/s41477-018-0218-6 pmid: 30104651
[63]
ZHANG C Z, WANG P, TANG D, YANG Z M, LU F, QI J J, TAWARI N R, SHANG Y, LI C H, HUANG S W. The genetic basis of inbreeding depression in potato. Nature Genetics, 2019, 51(3): 374-378.

doi: 10.1038/s41588-018-0319-1 pmid: 30643248
[64]
SPOONER D M, GHISLAIN M, SIMON R, JANSKY S H, GAVRILENKO T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review, 2014, 80(4): 283-383.
[65]
USDA National Plant Germplasm System database [https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetailid=104921]
[66]
Europe Cooperative Programme for Plant Genetic Resources [https://eurisco.ipk-gatersleben.de/apex/eurisco_ws/r/eurisco/home]
[67]
YU L X, ZHENG P, ZHANG T J, RODRINGUEZ J, MAIN D. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Molecular Plant Pathology, 2017, 18(2): 187-194.
[68]
LIN S, NIU Y, AUGUSTO MEDINA C, YU L X. Two linked resistance genes function divergently in defence against Verticillium Wilt in Alfalfa. Plant Biotechnology Journal, 2022, 20(4): 619-621.
[69]
YE Q Y, MENG X Z, CHEN H, WU J L, ZHENG L H, SHEN C, GUO D, ZHAO Y F, LIU J L, XUE Q X, DONG J L, WANG T. Construction of genic male sterility system by CRISPR/Cas9 editing from model legume to alfalfa. Plant Biotechnology Journal, 2022, 20(4): 613-615.
[70]
曾祥翠, 杨永念, 李如月, 蒋学乾, 蒋旭, 徐嫣然, 刘忠宽, 龙瑞才, 康俊梅, 杨青川, 李明娜. 紫花苜蓿MsCEP基因家族的鉴定及其调控根系生长发育功能的分析. 中国农业科学, 2024, 57(24): 4839-4853. doi: 10.3864/j.issn.0578-1752.2024.24.002.
ZENG X C, YANG Y N, LI R Y, JIANG X Q, JIANG X, XU Y R, LIU Z K, LONG R C, KANG J M, YANG Q C, LI M N. Identification of alfalfa(Medicago sativa) MsC EP genes and functional analysis of its regulation in root growth and development. Scientia Agricultura Sinica, 2024, 57(24): 4839-4853. doi: 10.3864/j.issn.0578-1752.2024.24.002. (in Chinese)
[71]
DU J, LU S Y, CHAI M F, ZHOU C E, SUN L, TANG Y H, NAKASHIMA J, KOLAPE J, WEN Z Z, BEHZADIRAD M, et al. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. Plant Biotechnology Journal, 2021, 19(2): 351-364.
[72]
GOU J Q, DEBNATH S, SUN L, FLANAGAN A, TANG Y H, JIANG Q Z, WEN J Q, WANG Z Y. From model to crop: Functional characterization of SPL8 in M. Truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnology Journal, 2018, 16(4): 951-962.
[73]
ZHOU C E, HAN L, PISLARIU C, NAKASHIMA J, FU C X, JIANG Q Z, QUAN L, BLANCAFLOR E B, TANG Y H, BOUTON J H, et al. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology, 2011, 157(3): 1483-1496.
[74]
LORENZO C D, GARCÍA-GAGLIARDI P, ANTONIETTI M S, SÁNCHEZ-LAMAS M, MANCINI E, DEZAR C A, VAZQUEZ M, WATSON G, YANOVSKY M J, CERDÁN P D. Improvement of alfalfa forage quality and management through the down-regulation of MsFTa1. Plant Biotechnology Journal, 2020, 18(4): 944-954.

doi: 10.1111/pbi.13258 pmid: 31536663
[75]
KANG Y, LI M, SINHAROY S, VERDIER J. A snapshot of functional genetic studies in Medicago truncatula. Front Plant Sci, 2016, 7: 1175.
[76]
KHAIPHO-BURCH M, COOPER M, CROSSA J, DE LEON N, HOLLAND J, LEWIS R, MCCOUCH S, MURRAY S C, RABBI I, RONALD P, et al. Genetic modification can improve crop yields: But stop overselling it. Nature, 2023, 621(7979): 470-473.
[1] LÜ Tao, SUN GuoQing, GUO DongCai, CHEN QuanJia, CAI YongSheng, FAN BiaoXing, QU YanYing, ZHENG Kai. Development and Effectiveness Evaluation of InDel Molecular Markers Closely Linked to Fiber Strength QTL in Gossypium barbadense [J]. Scientia Agricultura Sinica, 2025, 58(9): 1684-1701.
[2] CHEN BingRu, TANG YuJie, ZHANG LiXia, ZHOU YuFei, YU Miao, SHI GuiShan, WANG XinDing, LI Yang, GAO ShiJie, LU XiaoChun, WANG Nai, DIAO XianMin. The Green Revolution of Chinese Grain Hybrid Sorghum [J]. Scientia Agricultura Sinica, 2025, 58(8): 1494-1507.
[3] YANG YongQing, HU PengJu, SONG YaHui, JIN XinXin, SU Qiao, WANG Jin. QTL Mapping of Quality Traits for A Peanut Germplasm SW9721-3 with Ultra-High Oil Content [J]. Scientia Agricultura Sinica, 2025, 58(4): 635-646.
[4] WANG WenJuan, SHI ShangLi, KANG WenJuan, DU YuanYuan, YIN Chen. The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 676-691.
[5] CHEN TianXiao, CAO Rong, SONG QianNan, HU LiangLiang, WANG SuHua, WANG LiXia, CHENG XuZhen, CHEN HongLin. Comprehensive Evaluation of Salt Tolerance at the Seedling Stage and Screening of Tolerant Germplasm in Adzuki Bean (Vigna angularis) [J]. Scientia Agricultura Sinica, 2025, 58(21): 4317-4332.
[6] XU XiuYuan, ZHANG HongZhi, XU LiJun, XUE Wei, NIE YingYing, GUO MingYing, LI JinXia, ZHAO YaRu, SHI MingJiang. Effects of Nitrogen Fertilization on Photosynthetic Carbon Allocation in Pasture Based on 13C Pulse-Labeling Experiments [J]. Scientia Agricultura Sinica, 2025, 58(21): 4346-4356.
[7] LÜ HuanHuan, LI RuYue, LIU QingSong, XU Lei, XU YanRan, YU HaoJie, GUO ChangHong, LONG RuiCai. Cloning and Salt Tolerance Function Analysis of MsKTI3 Gene in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4497-4511.
[8] YANG YongNian, ZENG XiangCui, LIU QingSong, LI RuYue, LONG RuiCai, CHEN Lin, WANG Xue, HE Fei, KANG JunMei, LI MingNa. Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress [J]. Scientia Agricultura Sinica, 2025, 58(21): 4512-4527.
[9] HUANG HongMei, WANG SiQi, YANG QingChuan, GUO ChangHong, WANG Xue. Phosphate Transporter MsPT5 Regulates Phosphate Uptake and Utilization in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4544-4556.
[10] LIU ChunLei, WANG Juan. Genetic Variation Analysis of New Germplasm with Combined High Yield and Salt Tolerance Developed from Derivative Materials of Pokkali [J]. Scientia Agricultura Sinica, 2025, 58(20): 4117-4130.
[11] CHEN YongXian, CHEN RuiJiang, DU YiZhi, ZHU JunJie, CHEN WanXia, ZHAO ZiHan, WANG JiChun, DU Kang, ZHANG Kai. Screening and Identification of Drought-Tolerant Sweet Potato Germplasm Resources [J]. Scientia Agricultura Sinica, 2025, 58(2): 214-237.
[12] BAO MingFang, QIN Yan, CHEN CaiJin, ZHANG ShangPei, ZHANG GuoHui, SHA XiaoDi. Evaluation of 111 Alfalfa Germplasm Resources for Seedling Phenotypic Drought Tolerance Characterization [J]. Scientia Agricultura Sinica, 2025, 58(19): 3825-3836.
[13] ZHAO Jian, REN Tao, FANG YaTing, YANG Xin, SHENG QianNan, LI XiaoKun, ZHU Jun, LU JianWei. Effect of Nitrogen Application on Organic Nitrogen Mineralization Functional Genes in Rapeseed and Wheat Rhizosphere Soils Under Different Rotation Patterns [J]. Scientia Agricultura Sinica, 2025, 58(19): 3919-3931.
[14] LI RuoHong, MA Wen, ZHAO ShiQiang, MAO PeiSheng. Antioxidant Physiology and Hormonal Response Pattern of Embryonic Root Mitochondria During Imbibition of Aging Seeds of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(19): 4014-4025.
[15] QIU DongFeng, LIU Gang, LIU ChunPing, XIA KuaiFei, WANG TingBao, WU Yan, HE Yong, HUANG XianBo, ZHANG ZaiJun, YOU AiQing, TIAN ZhiHong. Breeding of a New Heat-Tolerance Fragrant Rice Germplasm ZY532 Using Sanming Dominant Genic Male Sterile Rice [J]. Scientia Agricultura Sinica, 2025, 58(18): 3571-3582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!