Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4231-4245.doi: 10.3864/j.issn.0578-1752.2025.20.015

• ECOLOGICAL UTILIZATION OF SALINE-ALKALI LAND • Previous Articles     Next Articles

Effects of Calcium/Aluminum-Based Amendments on Saline-Alkali Soil Quality and Sunflower Yield in the Hetao Irrigation District

LI MingZhu1,2(), TIAN RongRong1,2, LI Ran1, WANG ShuJuan1,2, WANG WeiNi3, WANG Jing4,5, LIU JunMei3, LIU Jia1,2,6, LI YuYi4,5, XU LiZhen1,2,6, LI Yan1,2, ZHAO YongGan1,2,6()   

  1. 1 Department of Energy and Power Engineering, Tsinghua University/Beijing Engineering Research Center for Ecological Restoration and Carbon Sequestration in Saline-Alkali and Desertified Areas, Beijing 100084
    2 Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032
    3 Ordos Agricultural and Animal Husbandry Ecology and Resources Protection Center, Ordos 017010, Inner Mongolia
    4 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    5 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
    6 Huaqing Agricultural Development Co., Ltd., Beijing 100084
  • Received:2025-08-25 Accepted:2025-09-30 Online:2025-10-16 Published:2025-10-14
  • Contact: ZHAO YongGan

Abstract:

【Objective】This study aimed to investigate the effects of calcium- and/or aluminum-based soil amendments on soil quality and sunflower yield in the Hetao Irrigation District of Inner Mongolia, China, so as to provide a theoretical support and technical guidance for the comprehensive governance of saline-alkali lands in the region.【Method】A two-year (2022-2023) field experiment was conducted in Ordos City, Inner Mongolia, with four treatments: control (CK), calcium-based amendment (Ca-based), aluminum-based amendment (Al-based), and calcium+aluminum-based amendment (Ca+Al-based). The experiment systematically assessed soil salinity indices and nutrient content in the 0-20 cm soil layer, as well as sunflower agronomic traits and grain yield at harvest. The soil quality index (SQI) was constructed using principal component analysis, and structural equation modeling was employed to reveal the effects of the amendments on SQI and sunflower yield. 【Result】Compared with CK, all three soil amendments improved the SQI and sunflower yield. Among the treatments, the Ca+Al-based amendment demonstrated the most promising results, specifically reducing soil pH by 0.09-0.24 units and sodium adsorption ratio by 14.3%-24.9%, and increasing soil available phosphorus by 72.7%-147.0% and nitrate nitrogen by 0.6%-89.6%. Consequently, it increased the SQI by 51.0%-58.0% and sunflower seed yield by 30.0%-51.4% compared with CK. The Ca-based treatment was less pronounced, with SQI increasing by 36.3%-51.0% and yield increasing only in 2022 (29.3%). Notably, soil electrical conductivity increased by 16.0%-70.4% under the Ca-based and Ca+Al-based treatments, primarily due to an increase in water-soluble Ca2+, Mg2+, and SO42- concentrations, and did not lead to salt damage in plants. In addition, structural equation modeling revealed that the amendments exerted their effects by directly regulating soil salinity and nutrient indices, which indirectly increased SQI and yield. Furthermore, the contribution of soil salinity reduction to yield (79.2%) was greater than that of nutrient improvement (20.8%). 【Conclusion】The Ca+Al-based amendment demonstrated a synergistic effect in significantly improving soil quality and sunflower yield, making it a suitable option for further application in the Hetao Irrigation District of Inner Mongolia and similar ecological regions.

Key words: desulfurization gypsum, aluminum sulfate, soil amendment, saline-alkali soil, soil quality, sunflower, yield

Fig. 1

Average monthly precipitation and evaporation in the experimental site in 2022-2023"

Table 1

Physical and chemical properties of initial soil at 0-20 cm soil layer"

pH 电导率
EC
(μS·cm-1)
钠吸附比
SAR
((mmol·L-1)1/2)
水溶性离子 Water-soluble ions (cmol·kg-1) 养分含量 Nutrient status
K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- 有机碳SOC
(g·kg-1)
铵态氮NH4+-N
(mg·kg-1)
硝态氮NO3--N
(mg·kg-1)
有效磷
AP
(mg·kg-1)
速效钾
AK
(mg·kg-1)
8.8 541 7.2 <0.1 1.5 0.5 0.4 0.4 1.1 0.6 6.6 8.1 27.1 8.0 154.3

Table 2

The proportion of major elements for different soil amendments"

改良剂
Amendment
主要元素比例 Proportion of major element (%)
Ca Al S C O N P K Si Mg Fe Cl Na 其他Other
Ca-based 13.9 2.4 8.2 13.2 49.6 1.7 0.2 1.6 6.3 0.7 0.9 0.4 0.4 0.5
Al-based 4.8 5.3 8.9 10.2 51.1 1.4 0.2 6.7 8.0 0.6 1.6 0.2 0.7 0.5
Ca+Al-based 12.2 4.8 10.7 7.3 53.6 1.2 0.2 2.8 5.2 0.4 0.8 0.1 0.3 0.5

Table 3

Comprehensive score coefficients and weights of soil quality evaluation indicators"

指标
Indicators
综合得分系数 Comprehensive score coefficient 权重 Weight
2022 2023 2022 2023
pH 0.208 0.256 0.063 0.072
电导率EC 0.212 0.253 0.065 0.072
K+ 0.189 0.255 0.057 0.072
Na+ 0.213 0.252 0.065 0.071
Ca2+ 0.245 0.250 0.075 0.071
Mg2+ 0.263 0.258 0.080 0.073
Cl- 0.262 0.214 0.080 0.06
SO42- 0.210 0.276 0.064 0.078
HCO3- 0.161 0.204 0.049 0.058
有机碳SOC 0.204 0.214 0.062 0.061
全氮TN 0.224 0.161 0.068 0.046
铵态氮NH4+-N 0.193 0.238 0.059 0.067
硝态氮NO3--N 0.252 0.251 0.077 0.071
有效磷AP 0.262 0.238 0.080 0.067
速效钾AK 0.191 0.216 0.058 0.061

Fig. 2

Effects of amendments on soil pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) in 2022 and 2023 Different lowercase letters indicate significant differences (P<0.05) among the treatments within the same year, while different uppercase letters indicate significant differences (P<0.05) over years for the same treatment. *, **, *** represent significance at P<0.05, P<0.01, P<0.001, respectively. ns: Indicates non-significant differences. The same as below"

Fig. 3

Effects of amendments on the contents of soil water-soluble ions in 2022 and 2023"

Table 4

Effects of amendments on soil nutrient content in 2022 and 2023"

年份
Year
处理
Treatment
有机碳
SOC (g·kg-1)
全氮
TN (g·kg-1)
铵态氮
NH4+-N (mg·kg-1)
硝态氮
NO3--N (mg·kg-1)
速效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
2022 CK 6.79±0.4a 0.81±0.05a 8.87±0.77a 18.0±4.12b 7.55±0.3b 160±0.98b
Ca-based 7.24±0.15a 0.83±0.12a 6.46±0.63b 35.3±1.98a 13.6±0.97a 246±10.6a
Al-based 6.93±0.32a 0.78±0.04a 7.35±0.69ab 35.2±2.48a 7.38±0.53b 162±1.28b
Ca+Al-based 7.07±0.34a 0.76±0.06a 6.08±0.58b 34.2±2.23a 13.0±1.87a 167±2.49b
2023 CK 6.44±0.18a 0.73±0.01a 4.02±0.33a 69.9±2.73a 5.49±0.98b 115±3.27a
Ca-based 6.45±0.15a 0.80±0.12a 3.43±0.32a 39.3±11.81b 8.57±0.31b 126±2.45a
Al-based 6.82±0.43a 0.76±0.03a 4.12±0.28a 67.8±3.54a 8.14±0.75b 97.7±2.08b
Ca+Al-based 6.74±0.23a 0.80±0.05a 4.12±0.24a 70.4±2.19a 13.6±1.95a 123±5.33a
方差分析 ANOVA (P-value)
处理(改良剂)Treatment (T) 0.57 0.49 0.03 0.002 <0.001 <0.001
年份Year (Y) 0.03 0.51 <0.001 <0.001 0.02 <0.001
处理×年份T×Y 0.43 0.49 0.01 <0.001 0.01 <0.001

Fig. 4

Scores of soil indicators and soil quality index under different treatments in 2022 and 2023"

Table 5

Effects of amendments on the agronomic traits and seed yield of sunflower in 2022 and 2023"

年份
Year
处理
Treatment
出苗率
Emergence rate (%)
株高
Plant height (cm)
花盘直径
Disk diameter (cm)
百粒重
Hundred-grain weight (g)
籽粒产量
Seed yield (kg·hm-2)
2022 CK 76.0±7.1a 123.3±4.7d 18.7±1.2b 14.7±0.2b 2656.5±217.5b
Ca-based 77.3±1.9a 220.0±12.6a 21.3±0.5ab 17.4±0.6a 3453.1±288.7a
Al-based 79.7±2.9a 197.3±3.3b 24.3±1.2a 15.0±0.6b 3129.8±219.8ab
Ca+Al-based 84.0±2.8a 166.7±6.9c 23.7±1.2a 17.0±0.4a 3434.3±296.1a
2023 CK 71.7±13.1b 205.8±9.5ab 21.9±1.8a 15.5±0.9a 3375.7±329.3b
Ca-based 86.7±12.5a 217.2±7.3a 21.7±1.5a 18.9±0.8a 4780.1±434.6ab
Al-based 73.3±2.4b 223.3±1.8a 24.3±1.8a 17.5±1.3a 4523.2±332.5ab
Ca+Al-based 85.0±4.1a 190.7±14.9b 24.1±0.6a 18.5±0.3a 5110.3±630.1a
方差分析ANOVA (P-value)
处理(改良剂)Treatment (T) 0.18 <0.001 <0.001 <0.001 <0.001
年份Year (Y) 0.98 <0.001 <0.001 <0.001 <0.001
处理×年份T×Y 0.45 0.001 0.321 0.425 0.008

Fig.5

Correlation and contribution between soil indicators, soil quality index, and sunflower seed yield in 2022 and 2023"

Fig. 6

Structural equation model of responses of water-soluble ions and ammonium nitrogen (screened based on key indicators) in regulating sunflower yield to different amendments (a) Structural Equation Model (SEM) characterizing the relationships between soil SQI (Soil Quality Index), sunflower yield, soil saline-alkali indicators (K⁺, Na⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO₃⁻), and soil nutrient (NH₄⁺-N). Solid black lines and solid red lines represent significant positive and negative path coefficients, respectively (P <0.05). (b) Demonstrates the standardized effect values of various parameters on sunflower yield, including direct, indirect, and total effects. Among the model fit indices, χ²/df denotes the chi-square to degrees of freedom ratio, P represents the P-value of the chi-square test, CFI stands for the Comparative Fit Index, and RMSEA refers to the Root Mean Square Error of Approximation"

[1]
WICKE B, SMEETS E, DORNBURG V, VASHEV B, GAISER T, TURKENBURG W, FAAIJ A. The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 2011, 4(8): 2669-2681.
[2]
刘传孝, 李克升, 耿雨晗, 李全新. 黄河三角洲不同土地利用类型土壤微观结构特征. 农业工程学报, 2020, 36(6): 81-87.
LIU C X, LI K S, GENG Y H, LI Q X. Microstructure characteristics of soils with different land use types in the Yellow River Delta. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(6): 81-87. (in Chinese)
[3]
乔钲岩, 于淼, 唐玉劼, 石贵山, 刘新宇, 刘晓涵, 王新鼎, 李扬, 王鼐, 陈冰嬬. 粒用高粱幼苗期耐苏打盐碱综合评价与指标鉴选. 中国农业科学, 2025, 58(1): 30-49. doi: 10.3864/j.issn.0578-1752.2025.01.003.
QIAO Z Y, YU M, TANG Y J, SHI G S, LIU X Y, LIU X H, WANG X D, LI Y, WANG N, CHEN B R. Comprehensive evaluation for soda salinity and alkalinity in sorghum seedling stage and selection of indicators. Scientia Agricultura Sinica, 2025, 58(1): 30-49. doi: 10.3864/j.issn.0578-1752.2025.01.003. (in Chinese)
[4]
高英波, 张慧, 刘开昌, 张华斌, 李源方, 付希强, 薛艳芳, 钱欣, 代红翠, 李宗新. 优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率. 中国农业科学, 2020, 53(21): 4388-4398. doi: 10.3864/j.issn.0578-1752.2020.21.008.
GAO Y B, ZHANG H, LIU K C, ZHANG H B, LI Y F, FU X Q, XUE Y F, QIAN X, DAI H C, LI Z X. The coordination of nitrogen optimization with matched variety could enhance maize grain yield and nitrogen use efficiency of summer maize in saline land. Scientia Agricultura Sinica, 2020, 53(21): 4388-4398. doi: 10.3864/j.issn.0578-1752.2020.21.008. (in Chinese)
[5]
国务院. 关于推动盐碱地综合利用的指导意见. (2022-08-16)[2025-09-28].http://www.gov.cn/zhengce/zhengceku/2022-08/16/content_5690897.htm
State Council. Guidance on Promoting the Comprehensive Utilization of Saline-Alkaline Land. (2022-08-16)[2024-09-28].http://www.gov.cn/zhengce/zhengceku/2022-08/16/content_5690897.htm. (in Chinese)
[6]
周利颖, 李瑞平, 苗庆丰, 窦旭, 田峰, 于丹丹, 孙晨云. 河套灌区不同掺沙量对重度盐碱土壤水盐运移的影响. 农业工程学报, 2020, 36(10): 116-123.
ZHOU L Y, LI R P, MIAO Q F, DOU X, TIAN F, YU D D, SUN C Y. Effects of different sand ratios on infiltration and water-salt movement of heavy saline-alkali soil in Hetao irrigation area. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 116-123. (in Chinese)
[7]
HUANG G Z, LIU B S, JIANG X T, LIANG Y P, CAI J H, HUANG L H. The application of amendments improves properties of salt-affected soils across China. Soil and Tillage Research, 2025, 248: 106431.
[8]
LEI S H, JIA X X, ZHAO C L, SHAO M G. A review of saline-alkali soil improvements in China: Efforts and their impacts on soil properties. Agricultural Water Management, 2025, 317: 109617.
[9]
田荣荣, 张文超, 李烨, 徐立珍, 孙振涛, 李彦, 赵呈刚, 赵永敢, 王淑娟. 燃煤烟气脱硫石膏改良盐碱地技术研究与工程化应用进展. 燃烧科学与技术, 2022, 28(6): 736-748.
TIAN R R, ZHANG W C, LI Y, XU L Z, SUN Z T, LI Y, ZHAO C G, ZHAO Y G, WANG S J. Progress in research and engineering application of flue gas desulfurization gypsum to reclaim saline-alkali land. Journal of Combustion Science and Technology, 2022, 28(6): 736-748. (in Chinese)
[10]
苗月, 杨帆, 王志春, 邵玺文, 耿艳秋. 酸性物质对苏打盐碱土改良的研究进展. 中国生态农业学报(中英文), 2023, 31(3): 373-384.
MIAO Y, YANG F, WANG Z C, SHAO X W, GENG Y Q. Progress of research on the improvement of saline-sodic soil using acidic substances. Chinese Journal of Eco-Agriculture, 2023, 31(3): 373-384. (in Chinese)
[11]
CHEN X, YANG S Q, WEN X Y, GUO F Q, LOU S. Decision of straw deep burial and aluminum sulfate drip irrigation in soda saline soil based on grey relation analysis and TOPSIS coupling. Agronomy, 2024, 14(1): 3.
[12]
ZHAO Y G, WANG S J, LI Y, ZHUO Y Q, LIU J. Sustainable effects of gypsum from desulphurization of flue gas on the reclamation of sodic soil after 17 years. European Journal of Soil Science, 2019, 70(5): 1082-1097.
[13]
范定慷, 王永亮, 张强, 杨治平, 严国辉. 不同含硫物料对盐碱地的改良效果. 山西农业科学, 2017, 45(5): 786-790.
FAN D K, WANG Y L, ZHANG Q, YANG Z P, YAN G H. Improvement effect of different sulfur bearing material on saline- alkali soil. Journal of Shanxi Agricultural Sciences, 2017, 45(5): 786-790. (in Chinese)
[14]
司振江, 张忠学, 李芳花, 黄彦. 松嫩平原盐碱土集成治理技术的研究. 灌溉排水学报, 2010, 29(3): 80-84.
SI Z J, ZHANG Z X, LI F H, HUANG Y. Saline alkali soil characteristic and integrated improvement technology of Songnen Plain. Journal of Irrigation and Drainage, 2010, 29(3): 80-84. (in Chinese)
[15]
赵兰坡, 王宇, 马晶, 李春林, 郄瑞卿, 韩兴. 吉林省西部苏打盐碱土改良研究. 土壤通报, 2001, 32(S1): 91-96.
ZHAO L P, WANG Y, MA J, LI C L, XI R Q, HAN X. Improvement of soda-typed saline-alkaline soil in western Jilin Province. Chinese Journal of Soil Science, 2001, 32(S1): 91-96. (in Chinese)
[16]
李鑫, 张文菊, 邬磊, 任意, 张骏达, 徐明岗. 土壤质量评价指标体系的构建及评价方法. 中国农业科学, 2021, 54(14): 3043-3056. doi: 10.3864/j.issn.0578-1752.2021.14.010.
LI X, ZHANG W J, WU L, REN Y, ZHANG J D, XU M G. Advance in indicator screening and methodologies of soil quality evaluation. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056. doi: 10.3864/j.issn.0578-1752.2021.14.010. (in Chinese)
[17]
李明珠, 张文超, 王淑娟, 李彦, 赵永敢, 刘娟, 李二珍, 仲生柱. 适宜脱硫石膏施用方式改良河套灌区盐碱土提高向日葵产量. 农业工程学报, 2022, 38(6): 89-95.
LI M Z, ZHANG W C, WANG S J, LI Y, ZHAO Y G, LIU J, LI E Z, ZHONG S Z. Suitable application of flue gas desulphurized gypsum to improve the sunflower yield in saline-alkali soil in the Hetao irrigation areas of Inner Mongolia. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 89-95. (in Chinese)
[18]
李彦, 衣怀峰, 赵博, 王淑娟, 禚玉群, 陈昌和, 徐旭常. 燃煤烟气脱硫石膏在新疆盐碱土壤改良中的应用研究. 生态环境学报, 2010, 19(7): 1682-1685.

doi: 10.16258/j.cnki.1674-5906(2010)07-1682-04
LI Y, YI H F, ZHAO B, WANG S J, ZHUO Y Q, CHEN C H, XU X C. Study on improving Xinjiang sodic soils amelioration with desulfurized gypsum. Ecology and Environmental Sciences, 2010, 19(7): 1682-1685. (in Chinese)
[19]
张菁, 田荣荣, 王淑娟, 李彦, 王伟妮, 刘俊梅, 陈玉琳, 赵永敢. 钙基型土壤改良剂对盐碱土壤改良和向日葵产量的影响. 中国土壤与肥料, 2022(11): 68-76.
ZHANG J, TIAN R R, WANG S J, LI Y, WANG W N, LIU J M, CHEN Y L, ZHAO Y G. Effects of calcium-based amendments on saline-alkali soil improvement and sunflower yield. Soil and Fertilizer Sciences in China, 2022(11): 68-76. (in Chinese)
[20]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000: 49-56, 178-199.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000: 49-56, 178-199. (in Chinese)
[21]
XU Y, ZHENG C, LIANG L, YI Z L, XUE S. Quantitative assessment of the potential for soil improvement by planting Miscanthus on saline-alkaline soil and the underlying microbial mechanism. GCB Bioenergy, 2021, 13(7): 1191-1205.
[22]
LI N, WEN S Y, WEI S K, LI H Y, FENG Y Z, REN G X, YANG G H, HAN X H, WANG X J, REN C J. Straw incorporation plus biochar addition improved the soil quality index focused on enhancing crop yield and alleviating global warming potential. Environmental Technology & Innovation, 2021, 21: 101316.
[23]
ZHOU M, LIU X B, MENG Q F, ZENG X N, ZHANG J Z, LI D W, WANG J, DU W L, MA X F. Additional application of aluminum sulfate with different fertilizers ameliorates saline-sodic soil of Songnen Plain in Northeast China. Journal of Soils and Sediments, 2019, 19(10): 3521-3533.
[24]
TIAN Y, XIA R M, YING Y Q, LU S G. Desulfurization steel slag improves the saline-sodic soil quality by replacing sodium ions and affecting soil pore structure. Journal of Environmental Management, 2023, 345: 118874.
[25]
王小彬, 闫湘, 李秀英, 蔡典雄, 雷梅. 燃煤烟气脱硫石膏农用的环境安全风险. 中国农业科学, 2018, 51(5): 926-939. doi: 10.3864/j.issn.0578-1752.2018.05.011.
WANG X B, YAN X, LI X Y, CAI D X, LEI M. Environment risk for application of flue gas desulfurization gypsum in soils in China. Scientia Agricultura Sinica, 2018, 51(5): 926-939. doi: 10.3864/j.issn.0578-1752.2018.05.011. (in Chinese)
[26]
田荣荣, 王淑娟, 刘嘉, 徐立珍, 孙振涛, 李彦, 李二珍, 温晓亮, 杨晶, 赵永敢. 根区施用生物炭和脱硫石膏提高盐碱土壤质量及向日葵产量. 农业工程学报, 2024, 40(5): 148-157.
TIAN R R, WANG S J, LIU J, XU L Z, SUN Z T, LI Y, LI E Z, WEN X L, YANG J, ZHAO Y G. Applying biochar and flue gas desulfurization gypsum in the root zone to improve saline-alkali soil quality and sunflower yield. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(5): 148-157. (in Chinese)
[27]
CHENG Y J, HUANG C Y, HO H M, HUANG M H. Morphology and protein adsorption of aluminum phosphate and aluminum hydroxide and their potential catalytic function in the synthesis of polymeric emulsifiers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125564.
[28]
FANG F, MIN F F, LIU L Y, CHEN J, REN B, LIU C F. Adsorption of Al(OH)n(3-n)+ (n = 2-4) on kaolinite (001) surfaces: A DFT study. Applied Clay Science, 2020, 187: 105455.
[29]
MURAD G A, DAKROURY G A, ABU ELGOUD E M. Exploiting carboxymethyl cellulose-starch/alumina nano gel to eliminate Fe(III) from ore leachates of rare earth elements. Cellulose, 2024, 31(2): 969-992.
[30]
TIAN Y, JIANG W T, CHEN G L, WANG X K, LI T T. Gypsum and organic materials improved soil quality and crop production in saline-alkali on the Loess Plateau of China. Frontiers in Environmental Science, 2024, 12: 1434147.
[31]
王宇, 韩兴, 赵兰坡, 马晶. 硫酸铝对苏打盐碱土化学性质及水稻产量的影响. 吉林农业大学学报, 2006, 28(6): 652-655, 659.
WANG Y, HAN X, ZHAO L P, MA J. Effect of aluminum sulfate on chemical characteristics of soda alkali-saline soil and rice yield. Journal of Jilin Agricultural University, 2006, 28(6): 652-655, 659. (in Chinese)
[32]
VÁZQUEZ E, TEUTSCHEROVA N, PASTORELLI R, LAGOMARSINO A, GIAGNONI L, RENELLA G. Liming reduces N2O emissions from Mediterranean soil after-rewetting and affects the size, structure and transcription of microbial communities. Soil Biology and Biochemistry, 2020, 147: 107839.
[33]
BEHRENDT T, BRAKER G, SONG G Z, POMMERENKE B, DÖRSCH P. Nitric oxide emission response to soil moisture is linked to transcriptional activity of functional microbial groups. Soil Biology and Biochemistry, 2017, 115: 337-345.
[34]
ALI S, LI D C, HUANG J, AHMED W, ABBAS M, QASWAR M, ANTHONIO C K, ZHANG L, WANG B R, XU Y M, ZHANG H M. Soil microbial biomass and extracellular enzymes regulate nitrogen mineralization in a wheat-maize cropping system after three decades of fertilization in a Chinese Ferrosol. Journal of Soils and Sediments, 2021, 21(1): 281-294.
[35]
李杰, 姬景红, 李玉影, 刘双全, 任翠梅, 刘冰, 杨丽, 孙兴荣. 施用改良剂对大庆盐碱土的改良效果研究. 中国土壤与肥料, 2016(2): 50-54.
LI J, JI J H, LI Y Y, LIU S Q, REN C M, LIU B, YANG L, SUN X R. The improving effect of applying different ameliorants on saline soil in Daqing city. Soil and Fertilizer Sciences in China, 2016(2): 50-54. (in Chinese)
[36]
马红燕, 张伟华. 脱硫副产物与腐植酸混合施用对盐碱土速效养分的影响. 内蒙古民族大学学报(自然科学版), 2013, 28(3): 291-295.
MA H Y, ZHANG W H. The influence of coal-fired flue gas desulfurization and humic acid by-products on saline soil available nutrient. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2013, 28(3): 291-295. (in Chinese)
[37]
MALECKI-BROWN L M, WHITE J R. Effect of aluminum- containing amendments on phosphorus sequestration of wastewater treatment wetland soil. Soil Science Society of America Journal, 2009, 73(3): 852-861.
[38]
CAO X D, HARRIS W G, JOSAN M S, NAIR V D. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions. Science of the Total Environment, 2007, 383(1/2/3): 205-215.
[39]
LARSEN J E, WARREN G F, LANGSTON R. Effect of iron, aluminum and humic acid on phosphorus fixation by organic soils. Soil Science Society of America Journal, 1959, 23(6): 438-440.
[40]
RAWAT P, DAS S, SHANKHDHAR D, SHANKHDHAR S C. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68.
[41]
TAYLOR A W, GURNEY E L, MORENO E C. Precipitation of phosphate from calcium phosphate solutions by iron oxide and aluminum hydroxide. Soil Science Society of America Journal, 1964, 28(1): 49-52.
[42]
WU F T, LUO C Y, LU Y H, LI X Y, LI K Y, DU Y X. Fe(III)- mediated sediment sequestration of phosphate and humic acid: Timing of inputs regulates environmental processes. Chemical Geology, 2025, 683: 122778.
[43]
程镜润, 陈小华, 刘振鸿, 李小平, 付融冰, 陈泉源. 脱硫石膏改良滨海盐碱土的脱盐过程与效果实验研究. 中国环境科学, 2014, 34(6): 1505-1513.
CHENG J R, CHEN X H, LIU Z H, LI X P, FU R B, CHEN Q Y. The experimental study on the process and effect to the FGD-gypsum as an improvement in coastal saline-alkali soil. China Environmental Science, 2014, 34(6): 1505-1513. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[11] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!