Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (16): 3294-3304.doi: 10.3864/j.issn.0578-1752.2024.16.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

STM2503 Regulates Biofilm Formation and Stress Adaptability of S. Typhimurium

WANG NanWei(), LI LiLi, CHEN KaiFeng, ZHOU ZhouPing, PAN Peng, GUAN Jin, XU ChengGang, LIAO Ming, ZHANG JianMin()   

  1. School of Veterinary Medicine, South China Agricultural University/National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control/Key Lab for Zoonosis of Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture/Guangdong Key Laboratory of Zoonotic Diseases of Animal Origin, Guangzhou 510642
  • Received:2024-03-05 Accepted:2024-06-03 Online:2024-08-16 Published:2024-08-27
  • Contact: ZHANG JianMin

Abstract:

【Objective】S. Typhimurium is an important zoonotic pathogen, and its strong pressure adaptability brings great challenges to its prevention and control. In this study, the mechanism related to c-di-GMP pathway gene STM2503 regulating the biofilm formation, and thereby affects environmental stress capacity of S. Typhimurium, were investigated, so as to excavate the key factors regulating the stress adaptation of S. Typhimurium, and provide a theoretical basis for the formulation of new prevention and control strategies.【Method】The STM2503 gene deletion strain was constructed by λ-Red homologous recombination, and plasmid PBAD was used to express STM2503 to construct the gene complementation strain. Then, the effect of STM2503 on the intracellular c-di-GMP level of bacteria was revealed by detecting the signaling molecule c-di-GMP content in strains with different STM2503 expression levels. Next, the effect of STM2503 on bacterial motility and biofilm formation ability were detected by bacterial motility detection and crystal violet staining experiments, furthermore, the real-time fluorescence quantitative PCR was employed to elucidate its regulatory mechanism on bacterial motility and biofilm formation at the genetic level. Finally, the effect of STM2503 on the stress adaptability of S. Typhimurium was investigated through antibiotic treatment, oxidative stress, and disinfectant stress tests.【Result】Compared with the wild strain (WT269), the deletion of STM2503 increased the intracellular c-di-GMP content of the strain by 37.51%, and did not affect the normal growth of the strain. In addition, the deletion of STM2503 increased the expression level of extracellular matrix synthesis genes, and increased the content of extracellular polysaccharide, extracellular DNA and extracellular protein by 10.30% (P<0.01), 33.59% (P<0.001) and 27.60% (P<0.01), respectively, which ultimately led to a significant enhancement of biofilm formation ability by 1.63-fold (P<0.01). Moreover, 269ΔSTM2503 reduced the motile diameter by 17.22% (P<0.01) compared with the wild strain (WT269) at 6 h via decreasing the expression of flagella synthesis related genes fliA and flhC. These changes eventually led to a 1-3 fold reduction in the sensitivity of the 269ΔSTM2503 strain to β-lactam antibiotics, such as cefotaxime, cefepime, and amoxicillin, along with showed stronger adaptability under oxygen stress and SDS disinfectant stress. 【Conclusion】 In conclusion, STM2503 was involved in the degradation of the signaling molecule c-di-GMP and reduced the biofilm formation ability of S. Typhimurium by inhibiting the synthesis of extracellular substances and enhanced the motility of strains by upregulating the expression of flagellar synthesis genes, thereby reducing the drug resistance and environmental stress adaptability of S. Typhimurium. This study provided a theoretical basis for the excavation of the key targets for the prevention and control of S. Typhimurium.

Key words: S. Typhimurium, C-di-GMP, STM2503, biofilm, motility

Table 1

Primer sequences used for PCR"

引物名称 Primer 引物序列 Primer sequences (5′→3′)
STM2503-Red-F CCAGTGTGATTAAACGCCGTTTCCCCTCCCTTCGCCCATCTGCTAGTGTAGGCTGGAGCTGCTTC
STM2503-Red-R ACAGCCTGCCCACGACGAAGAGGAATAACGTCACACGCAGGAATCCATATGAATATCCTCCTTAG
STM2503-JD-F GTGCAGGTGCCGTGTATC
STM2503-JD-R CTATCAATCTGTTAGGCGTTTT
STM2503-HF AACTGCAGAACCAATGCATTGGGCTACGGATGGGCGAAAT
STM2503-HR GCCGGAATTCCGGCCACGCAGGAATCAAGTCT
pKD46-JD-F GCAACTTTATCCGCCTCC
pKD46-JD-R TCGCCCTTATTCCCTTTT
pCP20-JD-F CAGTGCTGCAATGATACCGC
pCP20-JD-R TCCTTGAGAGTTTTCGCCCC
PBAD-F GCGTCACACTTTGCTATGCC
PBAD-R ACGGCGTTTCACTTCTGAGT
BcsA-F TGCGGGCTGATTCTGCTGTTTGC
BcsA-R CGAAATGATTCACGCCCGCCGT
BcsB-F AAAAGGTATCGCACAAGGG
BcsB-R GCTACGCAGCAAATAGAGGT
CsgB-F TCGACTTTCGCCCGATTAT
CsgB-R AGGTCCAGGGTGACAGCAT
CsgA-F CCAGGGTGCGGATAACAGTA
CsgA-R CCAACCTGACGCACCATTAC
FliA-F GCAAGGAACGGCATTTAC
FliA-R AAAGTTGGCTGTTGTTGGTAT
FlhC-F GAAAGTGGGTTGCTTGAATTG
FlhC-R GCATCTCGGGAAAGTTTACG
FlhD-F TGATGATCGTCAAACCGGAAA
FlhD-R TGCCGCAGATGGTCAAACTG

Fig. 1

Identification of constructed STM2503 deletion and complementation strains A. Identification of STM2503 deletion, (M: 5000 bp DNA relative molecular weight; Lanes 1 and 2: deletion mutant strain 269 ΔSTM2503; Lanes 3 and 4: Wild strain WT269); B. Identification of complementation strain 269 ΔSTM2503R (M: 5000 bp DNA relative molecular weight; 1: Empty load of plasmid PBAD; 2: Complementation strain 269 ΔSTM2503R)"

Fig. 2

Effect of STM2503 deletion on bacterial growth"

Fig. 3

Effect of STM2503 on the intracellular c-di-GMP content of strains A: C-di-GMP standard curve; B: Identification of c-di-GMP content in strains with different STM2503 expression levels"

Fig. 4

Identification of multicellular behavioral phenotypes of strains with different expression levels of STM2503"

Fig. 5

Deletion of STM2503 enhanced the biofilm formation ability of S. Typhimurium"

Fig. 6

Quantification of extracellular matrix components in WT269, 269ΔSTM2503, and 269ΔSTM2503R strains A, B, C are quantitative analyses of extracellular proteins, extracellular DNA, and extracellular polysaccharides of strains with different STM2503 expression levels, respectively; D: Glucose standard curve"

Fig. 7

Regulation of S. Typhimurium motility by STM2503"

Fig. 8

QRT-PCR analysis of the effect of STM2503 on the expression levels of genes related to biofilm and motility"

Fig. 9

The role of STM2503 in stress adaptation of S. Typhimurium"

Table 2

Results of antibiotic susceptibility assay of strains with different expression levels of STM2503"

CTX FEP AMX CEF CAZ TET DOX KAN AMK GEN STR FFC CHL NAL CIP NOR OFX
269 1 0.25 1 4 4 1 2 2 2 2 16 4 2 4 0.5 1 1
269ΔSTM2503 2 1.00 2 8 8 1 2 2 2 2 16 4 2 4 0.5 1 1
269ΔSTM2503R 1 0.25 1 4 4 1 2 2 2 2 16 4 2 4 0.5 1 1
[1]
郭奎, 张泽楠, 李帅杰, 初晓雨, 王垚鑫, 郭巍, 胡哲, 王晓钧. 致马属动物流产沙门氏菌通用型间接ELISA抗体检测方法的建立与应用. 中国农业科学, 2023, 56(12): 2421-2430. doi: 10.3864/j.issn.0578-1752.2023.12.015.
GUO K, ZHANG Z N, LI S J, CHU X Y, WANG Y X, GUO W, HU Z, WANG X J. Development and application of a universal iELISA antibody assay for abortion-causing Salmonella in Equidae. Scientia Agricultura Sinica, 2023, 56(12): 2421-2430. doi: 10.3864/j.issn.0578-1752.2023.12.015. (in Chinese)
[2]
ZHANG J M, PENG Z, CHEN K F, ZHAN Z Q, SHEN H Y, FENG S X, GOU H C, QU X Y, ZIEMANN M, LAYTON D S, WANG X R, CHEN H C, WU B, XU X B, LIAO M. Genomic characterization of Salmonella enterica serovar weltevreden associated with human diarrhea. Microbiology Spectrum, 2023, 11(1): e0354222.
[3]
PULFORD C V, PEREZ-SEPULVEDA B M, CANALS R, BEVINGTON J A, BENGTSSON R J, WENNER N, RODWELL E V, KUMWENDA B, ZHU X J, BENNETT R J, et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nature Microbiology, 2021, 6: 327-338.
[4]
QIN Y N, HASMAN H, AARESTRUP F M, ALWATHNANI H A, RENSING C. Genome sequences of three highly copper-resistant Salmonella enterica subsp. i serovar typhimurium strains isolated from pigs in Denmark. Genome Announcements, 2014, 2(6): e01334-14.
[5]
WANG Y N, LIU Y, LYU N, LI Z Y, MA S F, CAO D M, PAN Y L, HU Y F, HUANG H, GAO G F, XU X B, UNION T B L, ZHU B L. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. National Science Review, 2023, 10(3): nwac269.
[6]
WILLIAMSON D A, LANE C R, EASTON M, VALCANIS M, STRACHAN J, VEITCH M G, KIRK M D, HOWDEN B P. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrobial Agents and Chemotherapy, 2018, 62(2): e02012-17.
[7]
REDDY E A, SHAW A V, CRUMP J A. Community-acquired bloodstream infections in Africa: a systematic review and meta- analysis. The Lancet Infectious Diseases, 2010, 10(6): 417-432.
[8]
CHEN K F, GAO Y, LI L L, ZHANG W X, LI J Y, ZHOU Z P, HE H S, CHEN Z L, LIAO M, ZHANG J M. Increased drug resistance and biofilm formation ability in ST34-type Salmonella typhimurium exhibiting multicellular behavior in China. Frontiers in Microbiology, 2022, 13: 876500.
[9]
涂春田, 汪洋, 易力, 王瑜欣, 刘宝宝, 宫胜龙, 信号分子调控细菌生物被膜形成的分子机制. 生物工程学报, 2019, 35(4): 558-566.
TU C T, WANG Y, YI L, WANG Y X, LIU B B, GONG S L. Roles of signaling molecules in biofilm formation. Chinese Journal of Biotechnology, 2019, 35(4): 558-566. (in Chinese)
[10]
LI W L, LI Y H, LIU Y, SHI X L, JIANG M, LIN Y M, QIU Y Q, ZHANG Q, CHEN Q C, ZHOU L, SUN Q, HU Q H. Clonal expansion of biofilm-forming Salmonella typhimurium ST34 with multidrug-resistance phenotype in the southern coastal region of China. Frontiers in Microbiology, 2017, 8: 2090.
[11]
SISTI F, HA D G, O’TOOLE G A, HOZBOR D, FERNÁNDEZ J. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology, 2013, 159(Pt_5): 869-879.
[12]
霍卫萍, 刘智猛, 陈韦, 贾佳, 王媛媛, 张亚妮, 陈谷奎. 铜绿假单胞菌二鸟苷酸环化酶SiaD突变体的功能研究. 微生物学报, 2022, 62(10): 3997-4007.
HUO W P, LIU Z M, CHEN W, JIA J, WANG Y Y, ZHANG Y N, CHEN G K. Functions of mutants of diguanylate cyclase SiaD from Pseudomonas aeruginosa. Acta Microbiologica Sinica, 2022, 62(10): 3997-4007. (in Chinese)
[13]
RÖMLING U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cellular and Molecular Life Sciences CMLS, 2005, 62(11): 1234-1246.
[14]
SIMM R, REMMINGHORST U, AHMAD I, ZAKIKHANY K, RÖMLING U. A role for the EAL-Like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar typhimurium. Journal of Bacteriology, 2009, 191(12): 3928-3937.
[15]
李莉莉, 陈凯风, 陈兵, 周洲平, 王南威, 瞿孝云, 徐成刚, 廖明, 张建民. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用. 畜牧兽医学报, 2023, 54(12): 5207-5217.

doi: 10.11843/j.issn.0366-6964.2023.12.030
LI L L, CHEN K F, CHEN B, ZHOU Z P, WANG N W, QU X Y, XU C G, LIAO M, ZHANG J M. Regulatory role of STM 1827 in the biofilm formation and environmental stress of Salmonella typhimurium. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5207-5217. (in Chinese)
[16]
RÖMLING U. Cyclic di-GMP signaling in Salmonella enterica serovar Typhimurium. Microbial Cyclic Di-Nucleotide Signaling. Cham: Springer International Publishing, 2020: 395-425.
[17]
DATSENKO K A, WANNER B L. Cyclic di-GMP signaling in Salmonella enterica serovar Typhimurium. Microbial Cyclic Di-Nucleotide Signaling. 2000, 97(12): 6640-6645.
[18]
SPANGLER C, BÖHM A, JENAL U, SEIFERT R, KAEVER V. A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. Journal of Microbiological Methods, 2010, 81(3): 226-231.

doi: 10.1016/j.mimet.2010.03.020 pmid: 20385176
[19]
CIMDINS A, SIMM R. Semiquantitative analysis of the red, dry, and rough colony morphology of Salmonella enterica serovar typhimurium and Escherichia coli using Congo red. c-di-GMP signaling. New York, NY: Springer New York, 2017: 225-241.
[20]
GÓMEZ-BALTAZAR A, VÁZQUEZ-GARCIDUEÑAS M S, LARSEN J, KUK-SOBERANIS M E, VÁZQUEZ-MARRUFO G. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype typhimurium. Food Microbiology, 2019, 82: 303-315.
[21]
DRESSAIRE C, MOREIRA R N, BARAHONA S, ALVES DE MATOS A P, ARRAIANO C M. BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio, 2015, 6(1): e02352-14.
[22]
CHEN K F, LI L L, ZHOU Z P, WANG N W, DAI C Z, SUN D G, LI J Y, XU C G, LIAO M, ZHANG J M. BolA promotes the generation of multicellular behavior in S. Typhimurium by regulating the c-di-GMP pathway genes yeaJ and yhjH. International Journal of Food Microbiology, 2024, 411: 110518.
[23]
ALEKSANDROWICZ A, CAROLAK E, DUTKIEWICZ A, BŁACHUT A, WASZCZUK W, GRZYMAJLO K. Better together-Salmonella biofilm-associated antibiotic resistance. Gut Microbes, 2023, 15(1): 2229937.
[24]
PANG X Y, YANG Y S, YUK H G. Biofilm formation and disinfectant resistance of Salmonella sp. in mono‐and dual‐species with Pseudomonas aeruginosa. Journal of Applied Microbiology, 2017, 123(3): 651-660.
[25]
CHRISTEN M, CHRISTEN B, FOLCHER M, SCHAUERTE A, JENAL U. Identification and characterization of a cyclic di-GMP- specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry, 2005, 280(35): 30829-30837.
[26]
FLEMMING H C, WINGENDER J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8: 623-633.
[27]
KARATAN E, WATNICK P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310-347.

doi: 10.1128/MMBR.00041-08 pmid: 19487730
[28]
AIZAWA S I. Flagellar assembly in Salmonella typhimurium. Molecular Microbiology, 1996, 19(1): 1-5.
[29]
BELOIN C, ROUX A, GHIGO J M. Escherichia coli biofilms. ROMEO T, ed. Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 249-289.
[30]
JIANG Y, WANG Z Y, LI Q C, LU M J, WU H, MEI C Y, SHEN P C, JIAO X N, WANG J. Characterization of extensively drug-resistant Salmonella enterica serovar Kentucky sequence type 198 isolates from chicken meat products in Xuancheng, China. Microbiology Spectrum, 2023, 11(2): e0321922.
[31]
JANSSEN R, VAN DER STRAATEN T, VAN DIEPEN A, VAN DISSEL J T. Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes and Infection, 2003, 5(6): 527-534.
[1] WU YaJie, TAN Song, CHEN YuPing, NIU AJuan, LIU YuXin, WANG GuangYu, XU XingLian, QIU WeiFen. Effects of nuoB on the Biofilm Formation and Cellular Metabolism of Meat-Borne Pseudomonas fragi During Chilled Storage [J]. Scientia Agricultura Sinica, 2023, 56(11): 2172-2185.
[2] TANG ZiYun,HU JianXin,CHEN Jin,LU YiXing,KONG LingLi,DIAO Lu,ZHANG FaFu,XIONG WenGuang,ZENG ZhenLing. Relationship Between Biofilm Formation and Molecular Typing of Staphylococcus aureus from Animal Origin [J]. Scientia Agricultura Sinica, 2022, 55(3): 602-612.
[3] CHEN ChaoXi,LI YuHan,TAN Min,WANG Lu,HUANG ZhiHong. Biofilm-Forming Phenotype, Antibacterial Resistance Genes, Integrase Genes and Virulence Genes Detection of Escherichia coli Isolated from Yaks and Tibetan Pigs in Northwest Sichuan Plateau [J]. Scientia Agricultura Sinica, 2021, 54(23): 5144-5162.
[4] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[5] YANG Jun,CHU PinPin,SONG Shuai,CAI RuJian,YANG DongXia,BIAN ZhiBiao,GOU HongChao,LI Yan,JIANG ZhiYong,LI ChunLing,YAN He. Construction of lpxM Gene Deletion Strain of Haemophilus parasuis and It's Some Biological Characteristics [J]. Scientia Agricultura Sinica, 2020, 53(16): 3394-3403.
[6] HuaFei ZHOU,HongFu YANG,KeBing YAO,YiQing ZHUANG,ZhaoLin SHU,ZhiYi CHEN. FliZ Regulated the Biofilm Formation of Bacillus subtilis Bs916 and Its Biocontrol Efficacy on Rice Sheath Blight [J]. Scientia Agricultura Sinica, 2020, 53(1): 55-64.
[7] CHEN Xue-feng, YU Cheng-peng, LIU Qiong-guang . Functional Analysis of flhDC and fliA in Dickeya zeae [J]. Scientia Agricultura Sinica, 2016, 49(24): 4726-4734.
[8] CHEN Xue-Feng, WEI Chu-Dan, ZHANG Qing, LIU Qiong-Guang. Functional Analysis of HrpX/HrpY in Dickeya zeae Virulence [J]. Scientia Agricultura Sinica, 2014, 47(4): 675-684.
[9] LI Xiao-Tong, YANG Feng-Huan, LIANG Shi-Min, TIAN Fang, CHEN Hua-Min, HE Chen-Yang. Molecular Characterization of the Negative Regulator PXO_02944 in Virulence, Extracellular Polysaccharide Production and Biofilm Formation in Xanthomonas oryzae pv. oryzae [J]. Scientia Agricultura Sinica, 2014, 47(13): 2563-2570.
[10] BAI Hao, HAN Xian-Gan, LIU Lei, DAN Xue-Qin, SONG Jun, LIU Rui, DONG Hong-Liang, LIU Hai-Wen, DING Chan, YU Sheng-Qing. The Regulation of Autoinducer-2 in Avian Pathogenic Escherichia coli [J]. Scientia Agricultura Sinica, 2012, 45(24): 5110-5116.
[11] LI Li,YANG Hong-jun,LIU Dai-cheng,HE Hong-bin,WANG Chang-fa,ZHONG Ji-feng,GAO Yun-dong
. Biofilm Formation and Analysis of Associated Genes Involved in Staphylococcus Isolates from Bovine Mastitis
[J]. Scientia Agricultura Sinica, 2011, 44(1): 160-166 .
[12] . Identification of 16SrDNA and Research on Acylated Homoserine Lactones Produced by Pseudomomas Isolated from the Fish [J]. Scientia Agricultura Sinica, 2007, 40(7): 1486-1491 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!