Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3693-3708.doi: 10.3864/j.issn.0578-1752.2023.18.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Response of Functional Traits of Key Species in Meadow Steppe to Long-Term Grazing and Grazing Exclusion

SI YuFan1,2(), LI Hui2,3, LI ZiHao2,3, JIANG CuiXia2,3, GUO HaoNan2,3, YANG PeiZhi1, XI JieJun1, YAN RuiRui2, WURENQIQIGE4, SHAN Dan4, XIN XiaoPing2()   

  1. 1 College of Prataculture and Grassland,Northwest A&F University,Yangling 712100, Shaanxi
    2 National Field Scientific Observation and Research Station of Hulunbuir Grassland Ecosystem / Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 College of Ecology, Lanzhou University, Lanzhou 730000
    4 School of Agriculture and Forestry, Hulunbuir University, Hulunbuir 021008, Inner Mongolia
  • Received:2022-10-22 Accepted:2023-06-15 Online:2023-09-16 Published:2023-09-21
  • Contact: XIN XiaoPing

Abstract:

Objective】The response of plant functional traits to environmental changes and external disturbances reflects the phenotypic plasticity, survival strategies and adaptability of plants. The study on the changes of functional traits of grassland plants under long-term grazing and the recovery response after stopping grazing can provide a theoretical basis for grassland restoration management. 【Method】In this study, the changes of leaf functional traits (leaf dry mass, leaf total water content, leaf area, specific leaf area, leaf nitrogen content, leaf phosphorus content, leaf C/N raito, leaf N/P ratio) of six key species (Leymus chinensis,Carex pediformis,Cleistogenes squarrosa,Astragalus adsurgens,Artemisia tanacetifolia L.,Pulsatilla turczaninovii) in Hulunbuir meadow steppe under different grazing intensities during growing season were studied. The immediate recovery response of leaf functional traits of key species in meadow steppe after stopping grazing during growing season was discussed. 【Result】(1) The relative biomass and importance values of the six key species decreased with the increase of grazing intensity, and the values of light and heavy grazing intensity after stopping grazing were greater than that after continuing grazing. (2)The leaf dry mass and leaf C/N ratio of six key species decreased with the increase of grazing intensity; the leaf total water content, specific leaf area and leaf nitrogen content increased with the increase of grazing intensity; the leaf area of all species except Artemisia tanacetifolia L. decreased with the increase of grazing intensity; the leaf phosphorus content increased with the increase of grazing intensity except Cleistogenes squarrosa ; with the increase of grazing intensity, the leaf N/P ratio of Leymus chinensis,Carex pediformis,Cleistogenes squarrosa,Pulsatilla turczaninovii showed an increasing trend, while that of Astragalus adsurgens,Artemisia tanacetifolia L. decreased. (3) After stopping grazing, the resilience of heavy grazing was higher than that of light grazing, and the functional traits of 6 key species recovered better as a whole, leaf dry mass, leaf total water content, leaf area, specific leaf area and leaf N/P ratio showed positive response, leaf phosphorus content showed negative response, leaf nitrogen content and leaf C/N ratio showed different positive and negative responses among six key species, the negative response of leaf nitrogen content was less than positive response, and the positive response of leaf C/N was more than negative response. (4) The leaf morphological traits of grasses and the nutrient characteristics of miscellaneous grasses were more sensitive to recovery after stopping grazing, and the responses of leaf dry mass, leaf area and leaf phosphorus content to the interaction between grazing intensity and species were more significant. After stopping grazing, leaf dry mass of leaves increased with the increase of leaf area, leaf nitrogen content and leaf N/P of the six key species.【Conclusion】Long-term grazing led to individual miniaturization of grassland plants. After stopping grazing, the positive response of plant functional traits is more than negative response, and the grassland vegetation function shows an obvious recovery response, which increases the productivity of the grassland. Above-ground biomass of the meadow grassland increases.

Key words: long-term grazing, stop grazing, leaf functional traits, resilience, meadow steppe

Fig. 1

Test plan of different grazing intensities"

Fig. 2

Changes of relative biomass and important values of key species under different grazing intensities a,b are relative biomass (a) under different grazing intensities and relative biomass after stopping grazing, and important value (b) after stopping grazing of 6 key species, G represents continuing grazing, SG represents grazing exclusion,P.t,A.t.L.,A.a,C.s,C.p,L.c are Pulsatilla turczaninovii,Artemisia tanacetifolia L.,Astragalus adsurgens,Cleistogenes squarrosa,Carex pediformis,Leymus chinensis"

Fig. 3

Changes of leaf morphological traits of key species under different grazing intensities a,b,c,d are changes of leaf dry mass, leaf total water content, leaf area and specific leaf area of 6 key species under different grazing intensities, L.c,C.p,C.s,A.a,A.t.L.,P.t are Leymus chinensis, Carex pediformis, Cleistogenes squarrosa,Astragalus adsurgens,Artemisia tanacetifolia L., Pulsatilla turczaninovii, Different capital letters in the figure represent significant differences between grazing intensities"

Fig. 4

Changes of leaf nutrient characteristics of key species under different grazing intensities a,b,c,d are changes of leaf nitrogen content, leaf phosphorus content, leaf C/N ratio and leaf N/P ratio of 6 key species under different grazing intensities, L.c,C.p,C.s,A.a,A.t.L.,P.t are Leymus chinensis,Carex pediformis,Cleistogenes squarrosa,Astragalus adsurgens,Artemisia tanacetifolia L.,Pulsatilla turczaninovii, Different capital letters in the figure represent significant differences between grazing intensities"

Fig. 5

Response of leaf morphological traits of key species to stopping grazing a,b,c,d are responses of leaf dry mass, leaf total water content, leaf area and specific leaf area of six key species to recovery after stopping grazing, P.t,A.t.L.,A.a,C.s,C.p、L.c are Pulsatilla turczaninovii,Artemisia tanacetifolia L.,Astragalus adsurgens,Cleistogenes squarrosa,Carex pediformis,Leymus chinensis. Different capital letters in the figure represent significant differences between grazing intensities"

Fig. 6

Response of leaf nutrient characteristics of key species to stop grazing a,b,c,d are responses of leaf nitrogen content, leaf phosphorus content, leaf C/N ratio and leaf N/P ratio of six key species to recovery after stopping grazing, P.t,A.t.L.,A.a,C.s,C.p,L.c are Pulsatilla turczaninovii,Artemisia tanacetifolia L.,Astragalus adsurgens,Cleistogenes squarrosa,Carex pediformis,Leymus chinensis. Different capital letters in the figure represent significant differences between grazing intensities"

Table 1

Analysis of leaf functional traits by different grazing intensities and different species"

叶片功能性状
Leaf functional traits
放牧强度
Grazing intensity (df=5)
物种
Species (df=5)
放牧强度×物种
Grazing intensity×Species (df=25)
F P F P F P
叶片干重 Leaf dry mass (g·leaf-1) 8.792 <0.01 250.251 <0.01 2.948 <0.01
叶片含水量Leaf total water content (%) 4.068 <0.05 109.477 <0.01 0.492 >0.05
叶面积 Leaf area (cm2·leaf-1) 6.051 <0.01 201.728 <0.01 2.517 <0.01
比叶面积 Specific leaf area 4.998 <0.01 492.491 <0.01 0.973 >0.05
叶片氮含量 Leaf nitrogen content (mg·g-1) 3.481 <0.01 72.804 <0.01 0.320 >0.05
叶片磷含量 Leaf phosphorus content (mg·g-1) 13.768 <0.01 243.341 <0.01 2.009 <0.05
叶片C/N C:N ratio (leaf-1) 4.444 <0.01 60.732 <0.01 0.468 >0.05
叶片N/P N:P ratio (leaf-1) 0.829 >0.05 22.933 <0.01 0.308 >0.05

Fig. 7

Relationship between continuing grazing and grazing exclusion of different leaf characters of key species Different colors in the figure represent different species, and the size of dots from small to large represents grazing intensity from light to heavy"

[1]
张骞, 马丽, 张中华, 徐文华, 周秉荣, 宋明华, 乔安海, 王芳, 佘延娣, 杨晓渊, 郭婧, 周华坤. 青藏高寒区退化草地生态恢复: 退化现状、恢复措施、效应与展望. 生态学报, 2019, 39(20): 7441-7451.
ZHANG Q, MA L, ZHANG Z H, XU W H, ZHOU B R, SONG M H, QIAO A H, WANG F, SHE Y D, YANG X Y, GUO J, ZHOU H K. Ecological restoration of degraded grassland in Qinghai-Tibet alpine region: degradation status, restoration measures, effects and prospects. Acta Ecologica Sinica, 2019, 39(20): 7441-7451. (in Chinese)
[2]
刘兴元, 龙瑞军, 尚占环. 草地生态系统服务功能及其价值评估方法研究. 草业学报, 2011, 20(1): 167-174.
LIU X Y, LONG R J, SHANG Z H. Evaluation method of ecological services function and their value for grassland ecosystems. Acta Prataculturae Sinica, 2011, 20(1): 167-174. (in Chinese)
[3]
高军靖. 呼伦贝尔草原生态安全评价研究[D]. 北京: 中国环境科学研究院, 2013.
GAO J J. Study on ecological safety assessment in Hulunbeier steppe[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2013. (in Chinese)
[4]
胡志超, 李政海, 周延林, 鲍雅静, 张靖, 黄朔, 元征征, 洪光宇, 张文海. 呼伦贝尔草原退化分级评价及时空格局分析. 中国草地学报, 2014, 36(5): 12-18.
HU Z C, LI Z H, ZHOU Y L, BAO Y J, ZHANG J, HUANG S, YUAN Z Z, HONG G Y, ZHANG W H. The partitioning of degradation and analysis of its spatio-temporal pattern of Hulunbeier grassland, China. Chinese Journal of Grassland, 2014, 36(5): 12-18. (in Chinese)
[5]
贺鹏程, 叶清. 基于植物功能性状的生态学研究进展: 从个体水平到全球尺度. 热带亚热带植物学报, 2019, 27(5): 523-533.
HE P C, YE Q. Plant functional traits: from individual plant to global scale. Journal of Tropical and Subtropical Botany, 2019, 27(5): 523-533. (in Chinese)
[6]
MCINTYRE S, LAVOREL S, LANDSBERG J, FORBES T D A. Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science, 1999, 10(5): 621-630.

doi: 10.2307/3237077
[7]
LAVOREL S, GRIGULIS K, LAMARQUE P, COLACE M P, GARDEN D, GIREL J, PELLET G, DOUZET R. Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 2011, 99(1): 135-147.

doi: 10.1111/jec.2010.99.issue-1
[8]
赵娜, 赵新全, 赵亮, 徐世晓, 邹小艳. 植物功能性状对放牧干扰的响应. 生态学杂志, 2016, 35(7): 1916-1926.
ZHAO N, ZHAO X Q, ZHAO L, XU S X, ZOU X Y. Progress in researches of the response of plant functional traits to grazing disturbance. Chinese Journal of Ecology, 2016, 35(7): 1916-1926. (in Chinese)
[9]
WRIGHT I J, REICH P B, WESTOBY M, ACKERLY D D, BARUCH Z, BONGERS F, CAVENDER-BARES J, CHAPIN T, CORNELISSEN J H C, DIEMER M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827.

doi: 10.1038/nature02403
[10]
MOONEY K A, HALITSCHKE R, KESSLER A, AGRAWAL A A. Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science, 2010, 327(5973): 1642-1644.

doi: 10.1126/science.1184814 pmid: 20339073
[11]
ORWIN K H, MASON N W H, JORDAN O M, LAMBIE S M, STEVENSON B A, MUDGE P L. Season and dominant species effects on plant trait-ecosystem function relationships in intensively grazed grassland. Journal of Applied Ecology, 2018, 55(1): 236-245.

doi: 10.1111/jpe.2018.55.issue-1
[12]
晁永芳. 放牧活动对草原植物功能性状及其权衡关系的调控. 当代畜牧, 2018(2): 1-2.
CHAO Y F. Regulation of grazing activities on functional traits of grassland plants and their trade-offs. Contemporary Animal Husbandry, 2018(2): 1-2. (in Chinese)
[13]
张月强. 探究泰山木本植物功能性状间的关系及对环境因子的响应[D]. 济南: 山东大学, 2014.
ZHANG Y Q. Effects of environmental factors on plant functional traits and the relationship between functional traits in Taishan woody plants[D]. Jinan: Shandong University, 2014. (in Chinese)
[14]
GARCÍA-CERVIGÓN A I, GARCÍA-LÓPEZ M A, PISTÓN N, PUGNAIRE F I, OLANO J M. Co-ordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Annals of Botany, 2021, 127(7): 919-929.

doi: 10.1093/aob/mcab036
[15]
侯路路, 闫瑞瑞, 张宇, 辛晓平. 放牧强度对草甸草原羊草功能性状的影响. 中国农业科学, 2020, 53(13): 2562-2572.

doi: 10.3864/j.issn.0578-1752.2020.13.005
HOU L L, YAN R R, ZHANG Y, XIN X P. Effects of grazing intensity on functional traits of Leymus chinensis in meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2562-2572. (in Chinese)
[16]
李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 2014, 38(5): 440-451.

doi: 10.3724/SP.J.1258.2014.00040
LI X L, HOU X Y, WU X H, SA R L, JI L, CHEN H J, LIU Z Y, DING Y. Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 2014, 38(5): 440-451. (in Chinese)

doi: 10.3724/SP.J.1258.2014.00040
[17]
王炜, 刘钟龄, 郝敦元, 梁存柱. 内蒙古草原退化群落恢复演替的研究: Ⅰ.退化草原的基本特征与恢复演替动力. 植物生态学报, 1996, 20(5): 449-459.
WANG W, LIU Z L, HAO D Y, LIANG C Z. Research on the restoring succession of the degenerated grassland in inner mongolia──i. basic characteristics and driving force for restoration of the degenerated grassland. Acta Phytoecologica Sinica, 1996, 20(5): 449-459. (in Chinese)
[18]
ZIRBEL C R, BASSETT T, GRMAN E, BRUDVIG L A. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 2017, 54(4): 1070-1079.

doi: 10.1111/jpe.2017.54.issue-4
[19]
吴思雨, 宝音陶格涛, 许宏斌, 张璐. 放牧强度对内蒙古典型草原糙隐子草功能性状的影响. 应用生态学报, 2021, 32(2): 392-398.

doi: 10.13287/j.1001-9332.202102.003
WU S Y, BAO Y, XU H B, ZHANG L. Effects of grazing intensities on functional traits of Cleistogenes squarrosa in a typical grassland of Inner Mongolia, China. Chinese Journal of Applied Ecology, 2021, 32(2): 392-398. (in Chinese)
[20]
邢小青, 张璐, 宝音陶格涛, 杨兆平. 放牧对糙隐子草地上个体功能性状的影响. 中国草地学报, 2019, 41(6): 116-122.
XING X Q, ZHANG L, BAO Y, YANG Z P. Effect of grazing on the aboveground functional traits of Cleistogenes squarrosa. Chinese Journal of Grassland, 2019, 41(6): 116-122. (in Chinese)
[21]
邢小青, 郝匕台, 齐丽雪, 张璐, 宝音陶格涛. 放牧对克氏针茅功能性状的影响. 生态环境学报, 2019, 28(1): 57-64.

doi: 10.16258/j.cnki.1674-5906.2019.01.007
XING X Q, HAO B T, QI L X, ZHANG L, BAO Y. Effect of grazing on functional traits of Stipa krylovii. Ecology and Environmental Sciences, 2019, 28(1): 57-64. (in Chinese)
[22]
张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响. 植物生态学报, 2021, 45(8): 818-833.

doi: 10.17521/cjpe.2020.0373
ZHANG J H, WANG Z, HUANG Y M, CHEN H Y, LI Z Y, LIANG C Z. Effects of grassland utilization on the functional traits of dominant plants in a temperate typical steppe. Chinese Journal of Plant Ecology, 2021, 45(8): 818-833. (in Chinese)

doi: 10.17521/cjpe.2020.0373
[23]
YE R H, LIU G F, CHANG H, SHAN Y M, MU L, WEN C, TE R, WU N T, SHI L, LIU Y H, WANG H M, YUN X J, LIU G X, LI F. Response of plant traits of Stipa breviflora to grazing intensity and fluctuation in annual precipitation in a desert steppe, Northern China. Global Ecology and Conservation, 2020, 24: e01237.

doi: 10.1016/j.gecco.2020.e01237
[24]
BAI Y F, WU J G, CLARK C M, PAN Q M, ZHANG L X, CHEN S P, WANG Q B, HAN X G. Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49(6): 1204-1215.

doi: 10.1111/jpe.2012.49.issue-6
[25]
王淼, 张宇, 李瑞强, 辛晓平, 朱晓昱, 曹娟, 周忠义, 闫瑞瑞. 放牧强度对羊草草甸草原植物器官及群落氮磷化学计量的影响. 中国农业科学, 2022, 55(7): 1371-1384.

doi: 10.3864/j.issn.0578-1752.2022.07.009
WANG M, ZHANG Y, LI R Q, XIN X P, ZHU X Y, CAO J, ZHOU Z Y, YAN R R. Effects of grazing disturbance on the stoichiometry of nitrogen and phosphorus in plant organs of Leymus chinensis meadow steppe. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384. (in Chinese)
[26]
HE M A, ZHOU G Y, YUAN T F, GROENIGEN K J, SHAO J J, ZHOU X H. Grazing intensity significantly changes the C: N: P stoichiometry in grassland ecosystems. Global Ecology and Biogeography, 2020, 29(2): 355-369.

doi: 10.1111/geb.v29.2
[27]
石明明, 牛得草, 王莹, 袁晓波, 贺磊, 韩炳宏, 宗文杰, 傅华. 围封与放牧管理对高寒草甸植物功能性状和功能多样性的影响. 西北植物学报, 2017, 37(6): 1216-1225.
SHI M M, NIU D C, WANG Y, YUAN X B, HE L, HAN B H, ZONG W J, FU H. Effect of fencing and grazing management on the plant functional traits and functional diversity in an alpine meadow on the Tibetan Plateau. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(6): 1216-1225. (in Chinese)
[28]
闫瑞瑞, 辛晓平, 张保辉, 闫玉春, 杨桂霞. 肉牛放牧梯度对呼伦贝尔草甸草原植物群落特征的影响. 中国草地学报, 2010, 32(3): 62-67.
YAN R R, XIN X P, ZHANG B H, YAN Y C, YANG G X. Influence of cattle grazing gradient on plant community characteristics in Hulunber meadow steppe. Chinese Journal of Grassland, 2010, 32(3): 62-67. (in Chinese)
[29]
HOLLING C S. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 1973, 4: 1-23.

doi: 10.1146/ecolsys.1973.4.issue-1
[30]
贾志锋, 马祥, 徐成体, 刘文辉, 魏小星, 雷生春. 短期封育对贵南县轻度退化高寒草甸植被特征的影响. 草业科学, 2019, 36(11): 2766-2774.
JIA Z F, MA X, XU C T, LIU W H, WEI X X, LEI S C. Effects of short-term enclosure on the vegetation characteristics of a lightly degraded alpine meadow in Guinan County. Pratacultural Science, 2019, 36(11): 2766-2774. (in Chinese)
[31]
朱牛, 孙建, 石凝, 王金牛, 张林, 罗栋梁, 申承, 盖艾鸿. 短期围栏封育对高寒草甸植物群落及土壤理化性质的影响. 草地学报, 2023, 31(3): 834-843.

doi: 10.11733/j.issn.1007-0435.2023.03.025
ZHU N, SUN J, SHI N, WANG J N, ZHANG L, LUO D L, SHEN C, GAI A H. Effects of short-term fence enclosing on plant community and the physical and chemical properties of alpine meadow soils. Acta Agrestia Sinica, 2023, 31(3): 834-843. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2023.03.025
[32]
李向林. 草原管理的生态学理论与概念模式进展. 中国农业科学, 2018, 51(1): 191-202.

doi: 10.3864/j.issn.0578-1752.2018.01.018
LI X L. Advances in ecological theories and management models regarding rangeland management. Scientia Agricultura Sinica, 2018, 51(1): 191-202. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.01.018
[33]
GARNIER E, SHIPLEY B, ROUMET C, LAURENT G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 2001, 15(5): 688-695.

doi: 10.1046/j.0269-8463.2001.00563.x
[34]
刘金环, 曾德慧, Don Koo Lee. 科尔沁沙地东南部地区主要植物叶片性状及其相互关系. 生态学杂志, 2006, 25(8): 921-925.
LIU J H, ZENG D H, LEE D K. Leaf traits and their interrelationships of main plant species in southeast Horqin sandy land. Chinese Journal of Ecology, 2006, 25(8): 921-925. (in Chinese)
[35]
VENDRAMINI F, DÍAZ S, GURVICH D E, WILSON P J, THOMPSON K, HODGSON J G. Leaf traits as indicators of resource- use strategy in floras with succulent species. New Phytologist, 2002, 154(1): 147-157.

doi: 10.1046/j.1469-8137.2002.00357.x
[36]
ZHENG S X, REN H Y, LAN Z C, LI W H, WANG K B, BAI Y F. Effects of grazing on leaf traits and ecosystem functioning in Inner Mongolia grasslands: scaling from species to community. Biogeosciences, 2010, 7(3): 1117-1132.

doi: 10.5194/bg-7-1117-2010
[37]
SMITH S E. Variation in response to defoliation between populations of Bouteloua curtipendula var. caespitosa (Poaceae) with different livestock grazing histories. American Journal of Botany, 1998, 85(9): 1266-1272.

doi: 10.2307/2446637
[38]
LAPORTE M A, GARNIER E. ThesauForm—Traits: a web based collaborative tool to develop a thesaurus for plant functional diversity research. Ecological Informatics, 2012, 11: 34-44.

doi: 10.1016/j.ecoinf.2012.04.004
[39]
TJOELKER M G, CRAINE J M, WEDIN D, REICH P B, TILMAN D. Linking leaf and root trait syndromes among 39 grassland and savannah species. The New Phytologist, 2005, 167(2): 493-508.

doi: 10.1111/nph.2005.167.issue-2
[40]
牛得草, 董晓玉, 傅华. 长芒草不同季节碳氮磷生态化学计量特征. 草业科学, 2011, 28(6): 915-920.
NIU D C, DONG X Y, FU H. Seasonal dynamics of carbon, nitrogen and phosphorus stoichiometry in Stipa bungeana. Pratacultural Science, 2011, 28(6): 915-920. (in Chinese)
[41]
李丹, 康萨如拉, 赵梦颖, 张庆, 任海娟, 任婧, 周俊梅, 王珍, 吴仁吉, 牛建明. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系. 植物生态学报, 2016, 40(10): 991-1002.

doi: 10.17521/cjpe.2015.0465
LI D, KANGSARULA, ZHAO M Y, ZHANG Q, REN H J, REN J, ZHOU J M, WANG Z, WU R J, NIU J M. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 991-1002. (in Chinese)

doi: 10.17521/cjpe.2015.0465
[42]
KOERSELMAN W, MEULEMAN A F M. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. The Journal of Applied Ecology, 1996, 33(6): 1441.

doi: 10.2307/2404783
[43]
聂莹莹, 辛晓平, 徐丽君, 杨桂霞. 封育措施对呼伦贝尔草甸草原区草地生产力的影响. 中国农业资源与区划, 2022, 43(8): 74-82.
NIE Y Y, XIN X P, XU L J, YANG G X. Effects of enclosure measures on grassland and productivity in Hulunbeier meadow steppe. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(8): 74-82. (in Chinese)
[44]
翟夏杰, 黄顶, 王堃. 围封与放牧对典型草原植被和土壤的影响. 中国草地学报, 2015, 37(6): 73-78.
ZHAI X J, HUANG D, WANG K. Effects of fencing and grazing on vegetation and soil in typical grassland. Chinese Journal of Grassland, 2015, 37(6): 73-78. (in Chinese)
[45]
NIU K C, HE J S, ZHANG S T, LECHOWICZ M J. Tradeoffs between forage quality and soil fertility: lessons from Himalayan rangelands. Agriculture, Ecosystems & Environment, 2016, 234: 31-39.

doi: 10.1016/j.agee.2016.04.023
[46]
许雪贇, 曹建军, 杨淋, 杨书荣, 龚毅帆, 李梦天. 放牧与围封对青藏高原草地土壤和植物叶片化学计量学特征的影响. 生态学杂志, 2018, 37(5): 1349-1355.
XU X Y, CAO J J, YANG L, YANG S R, GONG Y F, LI M T. Effects of grazing and enclosure on foliar and soil stoichiometry of grassland on the Qinghai-Tibetan Plateau. Chinese Journal of Ecology, 2018, 37(5): 1349-1355. (in Chinese)
[1] WANG Miao,ZHANG Yu,LI RuiQiang,XIN XiaoPing,ZHU XiaoYu,CAO Juan,ZHOU ZhongYi,YAN RuiRui. Effects of Grazing Disturbance on the Stoichiometry of Nitrogen and Phosphorus in Plant Organs of Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2022, 55(7): 1371-1384.
[2] YAN RuiRui, GAO Wa, SHEN BeiBei, ZHANG Yu, WANG Miao, ZHU XiaoYu, XIN XiaoPing. Index System for Quantitative Evaluation of Pasture Degradation in Meadow Grassland of Inner Mongolia [J]. Scientia Agricultura Sinica, 2021, 54(15): 3343-3354.
[3] WANG KaiLi,YANG HeLong,XIAO Hong,SUN Wei,RONG YuPing. Effects of Nitrogen Application and Clipping Height on Vegetation Productivity and Plant Community Composition of Haying Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2625-2636.
[4] YAN RuiRui,ZHANG Yu,XIN XiaoPing,WEI ZhiJun,Wuren qiqige,GUO MeiLan. Effects of Mowing Disturbance on Grassland Plant Functional Groups and Diversity in Leymus chinensis Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2573-2583.
[5] HOU LuLu,YAN RuiRui,ZHANG Yu,XIN XiaoPing. Effects of Grazing Intensity on Functional Traits of Leymus chinensis in Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2562-2572.
[6] ZHANG Yu, HOU LuLu, YAN RuiRui, XIN XiaoPing. Effects of Grazing Intensity on Plant Community Characteristics and Nutrient Quality of Herbage in a Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2550-2561.
[7] LI XiangLin. Advances in Ecological Theories and Management Models Regarding Rangeland Management [J]. Scientia Agricultura Sinica, 2018, 51(1): 191-202.
[8] CHENG Kun, YUE Qian, XU Xiang-rui, YAN Ming, PAN Gen-xing. Characterizing and Quantifying Soil Resilience for Ecosystem Services [J]. Scientia Agricultura Sinica, 2015, 48(23): 4621-4629.
[9] WANG Hong-Mei, SUN Qi-Zhong, HUA Mei. Studies on Native Grass Silage of Different Plant Communities in Meadow Steppe [J]. Scientia Agricultura Sinica, 2013, 46(12): 2566-2575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!