Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (18): 3556-3573.doi: 10.3864/j.issn.0578-1752.2023.18.006

• PLANT PROTECTION • Previous Articles     Next Articles

Fluorescent Labeling and Observation of Infection Structure of Fusarium verticillioides

HA DanDan1(), ZHENG HongXia2(), ZHANG ZhenHao2, ZHU LiHong3, LIU Hao1, WANG JiaoYu2,3(), ZHOU Lei2()   

  1. 1 College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457
    2 Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences/State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Hangzhou 310021
    3 Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021
  • Received:2023-04-25 Accepted:2023-07-04 Online:2023-09-16 Published:2023-09-21
  • Contact: WANG JiaoYu, ZHOU Lei

Abstract:

Objective】Taking the dominant pathogen Fusarium verticillioides causing maize ear rot and producing fumonisin as the research object, the objective of this study is to construct fluorescent strains that constitutively express green fluorescent protein GFP, red fluorescent protein DsRED, peroxisome targeted marker protein DsRED-PTS1 and F-actin cytoskeleton binding protein LifeAct-GFP, observe the penetration structure of F. verticillioides infecting maize silk epidermis, and to clarify the regulatory mechanisms and influencing factors regulating the infection structure formation of F. verticillioides.【Method】Fluorescent expression vectors pCOM-GFP, pCOM-DsRED, pCOM-DsRED-PTS1, and pCOM-LifeAct-GFP were transformed into the wild-type strain D85-2 of F. verticillioides through Agrobacterium-mediated genetic transformation. The transformants containing the target genes were identified by PCR, and the expression and distribution of various fluorescent proteins were observed under laser confocal microscopy. Maize was inoculated to observe the infection structure. The penetration structure and dynamic assembly of F-actin were observed by simulating the plant epidermal penetration experiment with cellophane membrane. The influencing factors of penetration structure formation were detected using F-actin polymerization inhibitor Latruculin A, tricyclazole, and reactive oxygen species (ROS) inhibitor DPI (diphenyleneiodonium chloride).【Result】A genetic transformation method using geneticin G418 as a resistance marker was established. FV-GFP and FV-DsRED strains have clear and bright green fluorescence and red fluorescence, respectively. The red fluorescence in FV-DsRED-PTS1 strain is distributed as round dots in conidia and hypha, which is consistent with the distribution characteristics of peroxisome in fungi. FV-LifeAct-GFP strain has filamentous green fluorescence in conidia and hypha, which is consistent with the distribution characteristics of F-actin protein in fungi. During the infection process of maize silk epidermis, an infection structure resembling a hyphopodium was observed at the top of the hyphae. The ring-forming assembly of F-actin protein in the penetration structure was observed in the mimic penetration experiment on the cellophane membrane. Drug stress experiments have shown that the formation of penetrating structures is regulated by F-actin protein polymerization and ROS. Meanwhile, tricyclazole can inhibit penetration.【Conclusion】Four fluorescent labeled strains were constructed, with clear cell localization and normal growth phenotype and pathogenicity, which can meet the research needs related to pathogenic mechanisms. F. verticillioides can form a hyphopodium like infection structure with swollen hyphae at the top when infecting maize. It is confirmed that F-actin cyclization and polymerization, cytoskeleton assembly and ROS regulation are the key factors affecting the formation of infection structure of F. verticillioides.

Key words: Fusarium verticillioides, fluorescent labeling, peroxisome, infection structure, F-actin, reactive oxygen species (ROS)

Fig. 1

Construction of fluorescent labeling vectors"

Table 1

Primers used in this study"

引物名称
Primer name
序列
Sequence (5′-3′)
产物长度
Product length (bp)
G418-F GTGCCCTGAATGAACTGC 517
G418-R TCACGGGTAGCCAACG
GFP-F CTGGACGGCGACGTAAACGG 564
GFP-R GGACTGGGTGCTCAGGTAGTGG
RED-F ACGGCCACGAGTTCGA 549
RED-R CGTTGTGGGAGGTGATGT

Fig. 2

Sensitivity test of F. verticillioides wild-type strain D85-2 to geneticin G418"

Fig. 3

Confirmation of the F. verticillioides fluorescent transformants using PCR amplification"

Fig. 4

Colony morphology, growth rate, conidiation and pathogenicity of the four fluorescent transformants"

Fig. 5

Observation of GFP and DsRed fluorescence in the FV-GFP and FV-DsRED transformants"

Fig. 6

Observation of F-actin cytoskeleton with GFP fluorescence and peroxisomes with DsRED fluorescence in the FV-LifeAct- GFP and FV-DsRED-PTS1 transformants, respectively"

Fig. 7

Observation of GFP and DsRED fluorescence mixed with the cell wall staining agent CFW in the FV-GFP and FV-DsRED strains, respectively"

Fig. 8

Observation of F-actin cytoskeleton with GFP fluorescence and peroxisomes with DsRED fluorescence mixed with the cell wall staining agent CFW in the FV-LifeAct-GFP and FV-DsRED-PTS1 strains, respectively"

Fig. 9

Observation of the infection structure formed by F. verticillioides conidia inoculated on maize silk and the circular assembly of F-actin proteins in the penetration structure"

Fig. 10

The F-actin polymerization inhibitor Latruculin A reduced the penetration ability of F. verticillioides on cellophane membrane"

Fig. 11

The effects of tricyclazole, CFW, and DPI on the penetration ability of F. verticillioides on cellophane membrane A control without drug treatment"

[1]
柴海燕, 贾娇, 白雪, 孟玲敏, 张伟, 金嵘, 吴宏斌, 苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性. 中国农业科学, 2023, 56(1): 64-78. doi: 10.3864/j.issn.0578-1752.2023.01.005.

doi: 10.3864/j.issn.0578-1752.2023.01.005
CHAI H Y, JIA J, BAI X, MENG L M, ZHANG W, JIN R, WU H B, SU Q F. Identification of pathogenic Fusarium spp. causing maize ear rot and susceptibility of some strains to fungicides in Jilin Province. Scientia Agricultura Sinica, 2023, 56(1): 64-78. doi: 10.3864/j.issn.0578-1752.2023.01.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2023.01.005
[2]
段灿星, 王晓鸣, 宋凤景, 孙素丽, 周丹妮, 朱振东. 玉米抗穗腐病研究进展. 中国农业科学, 2015, 48(11): 2152-2164. doi: 10.3864/j.issn.0578-1752.2015.11.007.

doi: 10.3864/j.issn.0578-1752.2015.11.007
DUAN C X, WANG X M, SONG F J, SUN S L, ZHOU D N, ZHU Z D. Advances in research on maize resistance to ear rot. Scientia Agricultura Sinica, 2015, 48(11): 2152-2164. doi: 10.3864/j.issn.0578-1752.2015.11.007. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.11.007
[3]
王宝宝, 毕四刚, 肖明纲, 张冬英, 闫强, 张彦彦, 杨树龙, 朱振东, 段灿星. 黑龙江省玉米穗腐病致病镰孢菌分离鉴定及产毒基因型分析. 草业学报, 2020, 29(1): 163-174.

doi: 10.11686/cyxb2019198
WANG B B, BI S G, XIAO M G, ZHANG D Y, YAN Q, ZHANG Y Y, YANG S L, ZHU Z D, DUAN C X. Isolation and identification of pathogenic Fusarium spp. causing maize ear rot and analysis of their toxin-producing genotype in Heilongjiang Province. Acta Prataculturae Sinica, 2020, 29(1): 163-174. (in Chinese)
[4]
刘晓莉, 李金泽, 朱勇文, 王文策, 杨琳. 伏马毒素的毒性作用及研究进展. 中国饲料, 2022(23): 101-108.
LIU X L, LI J Z, ZHU Y W, WANG W C, YANG L. Toxic effects and research progress of fumonisin. China Feed, 2022(23): 101-108. (in Chinese)
[5]
赫丹, 徐剑宏, 仇剑波, 刘馨, 史建荣, LEE Y W. 伏马毒素的理化性质、检测方法及在我国玉米和玉米制品中的污染现状综述. 江苏农业科学, 2021, 49(21): 33-39.
HE D, XU J H, QIU J B, LIU X, SHI J R, LEE Y W. Review of physicochemical properties, detection methods and pollution status of fumonisin in maize and maize products in China. Jiangsu Agricultural Sciences, 2021, 49(21): 33-39. (in Chinese)
[6]
BLACUTT A A, GOLD S E, VOSS K A, GAO M, GLENN A E. Fusarium verticillioides: Advancements in understanding the toxicity, virulence, and niche adaptations of a model mycotoxigenic pathogen of maize. Phytopathology, 2018, 108(3): 312-326.

doi: 10.1094/PHYTO-06-17-0203-RVW pmid: 28971734
[7]
曾丹丹, 戎振洋, 袁咏天, 王晓莉, 郑小波. LAMP快速诊断由拟轮枝镰孢引起的水稻恶苗病. 南京农业大学学报, 2018, 41(2): 286-292.
ZENG D D, RONG Z Y, YUAN Y T, WANG X L, ZHENG X B. Rapid diagnosis of rice bakanae disease caused by Fusarium verticillioides using a loop-mediated isothermal amplification assay. Journal of Nanjing Agricultural University, 2018, 41(2): 286-292. (in Chinese)
[8]
胡颖雄, 刘玉博, 王慧, 靳林朋, 林凤, 张学才, 郑洪建. 玉米穗腐病抗性遗传与育种研究进展. 玉米科学, 2021, 29(2): 171-178.
HU Y X, LIU Y B, WANG H, JIN L P, LIN F, ZHANG X C, ZHENG H J. Research progress on ear rot resistant genetics and breeding in maize. Journal of Maize Sciences, 2021, 29(2): 171-178. (in Chinese)
[9]
杨校文, 常立国, 杨琴. 玉米穗腐病真菌毒素污染抗性遗传研究进展. 玉米科学, 2023, 31(1): 161-169.
YANG X W, CHANG L G, YANG Q. Advances on inheritance of ear rot and mycotoxin contamination resistance in maize. Journal of Maize Sciences, 2023, 31(1): 161-169. (in Chinese)
[10]
尹泽超, 王晓芳, 龙艳, 董振营, 万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制. 中国生物工程杂志, 2021, 41(12): 103-115.
YIN Z C, WANG X F, LONG Y, DONG Z Y, WAN X Y. Identification, genetic analysis and molecular mechanism of corn ear rot resistance. China Biotechnology, 2021, 41(12): 103-115. (in Chinese)
[11]
程璐, 陈家斌, 张艺璇, 杨丹丹, 谭静. 两种优势病原菌玉米穗腐病的研究比较. 云南大学学报(自然科学版), 2022, 44(3): 647-654.
CHENG L, CHEN J B, ZHANG Y X, YANG D D, TAN J. Research comparison of two dominant pathogens on maize ear rot. Journal of Yunnan University (Natural Sciences Edition), 2022, 44(3): 647-654. (in Chinese)
[12]
谢敏. 四川玉米穗腐病病原菌影响因子及四川主栽品种对串珠镰刀菌的抗病性研究[D]. 雅安: 四川农业大学, 2011.
XIE M. Causal organisms and impact factors of corn ear rot and resistance of corn varieties to Fusarium ear rot in Sichuan[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
[13]
周丹妮, 王晓鸣, 李丹丹, 杨洋, 陈国康, 段灿星. 重庆及周边地区玉米穗腐病致病镰孢菌的分离与鉴定. 植物保护学报, 2016, 43(5): 782-788.
ZHOU D N, WANG X M, LI D D, YANG Y, CHEN G K, DUAN C X. Isolation and identification of Fusarium species causing maize ear rot in Chongqing and its vicinity. Journal of Plant Protection, 2016, 43(5): 782-788. (in Chinese)
[14]
孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞. 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017, 44(5): 796-802.
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X. Isolation and identification of pathogens causing maize ear rot in Huang- Huai-Hai summer corn region. Journal of Plant Protection, 2017, 44(5): 796-802. (in Chinese)
[15]
肖淑芹, 许佳宁, 闫丽斌, 隋韵涵, 薛春生, 陈捷. 辽宁省玉米镰孢穗腐病病原菌的鉴定与分布. 植物保护学报, 2017, 44(5): 803-808.
XIAO S Q, XU J N, YAN L B, SUI Y H, XUE C S, CHEN J. Identification and distribution of Fusarium species causing maize ear rot in Liaoning Province. Journal of Plant Protection, 2017, 44(5): 803-808. (in Chinese)
[16]
魏琪, 廖露露, 陈莉, 齐永霞. 安徽省玉米穗腐病主要致病镰孢菌的分离与鉴定. 植物保护, 2019, 45(5): 221-225.
WEI Q, LIAO L L, CHEN L, QI Y X. Isolation and identification of main Fusarium species causing maize ear rot in Anhui Province. Plant Protection, 2019, 45(5): 221-225. (in Chinese)
[17]
党萌, 曹宇, 王明阳, 王楠, 龙淼. 控制镰刀菌产生伏马毒素的技术. 畜牧与兽医, 2018, 50(8): 113-116.
DANG M, CAO Y, WANG M Y, WANG N, LONG M. A review on the techniques of controlling fumonisin production by Fusarium. Animal Husbandry & Veterinary Medicine, 2018, 50(8): 113-116. (in Chinese)
[18]
孙磊, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文. 水稻穗腐病菌强致病力且高产伏马菌素菌株筛选. 中国水稻科学, 2018, 32(6): 610-616.

doi: 10.16819/j.1001-7216.2018.8045
SUN L, WANG L, LIU L M, HOU Y X, LI Q Q, HUANG S W. Screening for strains of rice spikelet rot disease pathogenic fungus with high fumonisin production and strong pathogenicity. Chinese Journal of Rice Science, 2018, 32(6): 610-616. (in Chinese)

doi: 10.16819/j.1001-7216.2018.8045
[19]
吴超柱, 徐凡, 郜炎龙, 姜和. 荧光标记技术在生物学和医学研究中的应用. 重庆理工大学学报(自然科学), 2014, 28(5): 55-62.
WU C Z, XU F, GAO Y L, JIANG H. Application of fluorescent labeling technique in the research of biology and medicine. Journal of Chongqing University of Technology (Natural Science), 2014, 28(5): 55-62. (in Chinese )
[20]
SCHNEIDER A F L, HACKENBERGER C P R. Fluorescent labelling in living cells. Current Opinion in Biotechnology, 2017, 48: 61-68.

doi: S0958-1669(16)30291-9 pmid: 28395178
[21]
KILARU S, SCHUSTER M, MA W, STEINBERG G. Fluorescent markers of various organelles in the wheat pathogen Zymoseptoria tritici. Fungal Genetics and Biology, 2017, 105: 16-27.

doi: 10.1016/j.fgb.2017.05.001
[22]
施笑笑, 王教瑜, 肖琛闻, 王艳丽, 李大勇, 柴荣耀, 孙国昌. 利用荧光蛋白标记西瓜枯萎病菌的过氧化物酶体及细胞核. 中国细胞生物学学报, 2020, 42(2): 195-203.
SHI X X, WANG J Y, XIAO C W, WANG Y L, LI D Y, CHAI R Y, SUN G C. Fluorescent labeling the peroxisome and nucleus in Fusarium oxysporum f. sp. niveum. Chinese Journal of Cell Biology, 2020, 42(2): 195-203. (in Chinese)
[23]
ORMO M, CUBITT A B, KALLIO K, GROSS L A, TSIEN R Y, REMINGTON S J. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273(5280): 1392-1395.

doi: 10.1126/science.273.5280.1392
[24]
任飞, 张佳琦, 胡恒康, 梁璧, 黄有军, 娄和强, 张启香. 红色荧光蛋白基因DsRED在核桃植株再生过程中的表达稳定性. 林业科学, 2020, 56(12): 166-176.
REN F, ZHANG J Q, HU H K, LIANG B, HUANG Y J, LOU H Q, ZHANG Q X. Expression stability of red fluorescent protein gene DsRED in the regeneration of walnut (Juglans regia) plant. Scientia Silvae Sinicae, 2020, 56(12): 166-176. (in Chinese)
[25]
ELORZA M V, RICO H, SENTANDREU R. Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. Journal of General Microbiology, 1983, 129(5): 1577-1582.
[26]
高飞雁, 李玲, 王教瑜, 王艳丽, 孙国昌. PEX基因在过氧化物酶体形成及真菌致病性中的作用. 遗传, 2017, 39(10): 908-917.
GAO F Y, LI L, WANG J Y, WANG Y L, SUN G C. The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi. Hereditas, 2017, 39(10): 908-917. (in Chinese)
[27]
刘毛欣, 王教瑜, 孙国昌. 稻瘟病菌过氧化物酶体产生与降解的关键基因. 中国生物化学与分子生物学报, 2014, 30(6): 554-564.
LIU M X, WANG J Y, SUN G C. Key genes in peroxisome biogenesis and degradation in Magnaporthe oryzae. Chinese Journal of Biochemistry and Molecular Biology, 2014, 30(6): 554-564. (in Chinese)
[28]
WANG J Y, WU X Y, ZHANG Z, DU X F, CHAI R Y, LIU X H, MAO X Q, QIU H P, WANG Y L, LIN F C, SUN G C. Fluorescent co-localization of PTS1 and PTS2 and its application in analysis of the gene function and the peroxisomal dynamic in Magnaporthe oryzae. Journal of Zhejiang University Science B, 2008, 9(10): 802-810.

doi: 10.1631/jzus.B0860001
[29]
虞梦雪, 王教瑜, 王士臻, 李玲, 王艳丽, 孙国昌. 灰葡萄孢菌过氧化物酶体及细胞核的荧光蛋白标记. 微生物学报, 2021, 61(5): 1246-1256.
YU M X, WANG J Y, WANG S Z, LI L, WANG Y L, SUN G C. Fluorescent labeling of peroxisome and nucleus in Botrytis cinereus. Acta Microbiologica Sinica, 2021, 61(5): 1246-1256. (in Chinese)
[30]
LU Y Q, ZHANG Y, LIAN N, LI X J. Membrane dynamics regulated by cytoskeleton in plant immunity. International Journal of Molecular Sciences, 2023, 24(7): 6059.

doi: 10.3390/ijms24076059
[31]
吴祖纯, 刘新光, 陈维春. 丝状肌动蛋白的组装及其生物学功能. 生命的化学, 2022, 42(5): 984-992.
WU Z C, LIU X G, CHEN W C. Assembly and biological functions of filamentous actin. Chemistry of Life, 2022, 42(5): 984-992. (in Chinese)
[32]
黄璐, 陈菁秋, 孙海涛, 李艳红, 陈志玲. 粗糙脉孢菌丝切蛋白的纯化及微丝解聚活性分析. 生物学杂志, 2022, 39(6): 25-29.
HUANG L, CHEN J Q, SUN H T, LI Y H, CHEN Z L. Purification and characterization of F-actin depolymerization properties of cofilin from Neurospora crassa. Journal of Biology, 2022, 39(6): 25-29. (in Chinese)
[33]
DAGDAS Y F, YOSHINO K, DAGDAS G, RYDER L S, BIELSKA E, STEINBERG G, TALBOT N J. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science, 2012, 336(6088): 1590-1595.

doi: 10.1126/science.1222934 pmid: 22723425
[34]
RIEDL J, CREVENNA A H, KESSENBROCK K, YU J H, NEUKIRCHEN D, BISTA M, BRADKE F, JENNE D, HOLAK T A, WERB Z, SIXT M, WEDLICH-SOLDNER R. Lifeact: A versatile marker to visualize F-actin. Nature Methods, 2008, 5(7): 605-607.

doi: 10.1038/nmeth.1220 pmid: 18536722
[35]
GUPTA Y K, DAGDAS Y F, MARTINEZ-ROCHA A L, KERSHAW M J, LITTLEJOHN G R, RYDER L S, SKLENAR J, MENKE F, TALBOT N J. Septin-dependent assembly of the exocyst is essential for plant infection by Magnaporthe oryzae. The Plant Cell, 2015, 27(11): 3277-3289.

doi: 10.1105/tpc.15.00552
[36]
ZHAO Y L, ZHOU T T, GUO H S. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathogens, 2016, 12(7): e1005793.

doi: 10.1371/journal.ppat.1005793
[37]
ZHOU T T, ZHAO Y L, GUO H S. Secretory proteins are delivered to the septin-organized penetration interface during root infection by Verticillium dahliae. PLoS Pathogens, 2017, 13(3): e1006275.

doi: 10.1371/journal.ppat.1006275
[38]
ZURIEGAT Q, ZHENG Y, LIU H, WANG Z, YUN Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Molecular Plant Pathology, 2021, 22(7): 882-895.

doi: 10.1111/mpp.13068
[39]
CHEN Y, KISTLER H C, MA Z. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology, 2019, 57: 15-39.

doi: 10.1146/phyto.2019.57.issue-1
[40]
孙华, 马红霞, 丁梦军, 李坡, 石洁, 刘树森. 拟轮枝镰孢ATMT突变体库的构建及分析. 中国农业科学, 2019, 52(8): 1380-1388. doi: 10.3864/j.issn.0578-1752.2019.08.008.

doi: 10.3864/j.issn.0578-1752.2019.08.008
SUN H, MA H X, DING M J, LI P, SHI J, LIU S S. Construction and evaluation of ATMT mutant library of Fusarium verticillioides. Scientia Agricultura Sinica, 2019, 52(8): 1380-1388. doi: 10.3864/ j.issn.0578-1752.2019.08.008. (in Chinese)

doi: 10.3864/ j.issn.0578-1752.2019.08.008
[41]
DENG Q, WU H, GU Q, TANG G, LIU W. Glycosyltransferase FvCpsA regulates fumonisin biosynthesis and virulence in Fusarium verticillioides. Toxins, 2021, 13(10): 718.

doi: 10.3390/toxins13100718
[42]
WANG Y, LIU X, XU Y, GU Y, ZHANG X, ZHANG M, WEN W, LEE Y W, SHI J, MOHAMED S R, GODA A A, WU H, GAO X, GU Q. The autophagy-related proteins FvAtg4 and FvAtg8 are involved in virulence and fumonisin biosynthesis in Fusarium verticillioides. Virulence, 2022, 13(1): 764-780.

doi: 10.1080/21505594.2022.2066611
[43]
ZHANG L, HOU M, ZHANG X, CAO Y, SUN S, ZHU Z, HAN S, CHEN Y, KU L, DUAN C. Integrative transcriptome and proteome analysis reveals maize responses to Fusarium verticillioides infection inside the stalks. Molecular Plant Pathology, 2023, 24(7): 693-710.

doi: 10.1111/mpp.v24.7
[44]
ZHOU D, WANG X, CHEN G, SUN S, YANG Y, ZHU Z, DUAN C. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10(2): 90.

doi: 10.3390/toxins10020090
[45]
ZHOU L, ZHAO J, GUO W, ZHANG T. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular wilt fungus Verticillium dahliae. Journal of Genetics and Genomics, 2013, 40(8): 421-431.

doi: 10.1016/j.jgg.2013.04.006
[46]
赵培宝, 周庆新, 任爱芝, 李多川. 根癌农杆菌介导的轮枝镰孢菌遗传转化及T-DNA插入突变体的筛选. 菌物学报, 2008, 27(2): 258-266.
ZHAO P B, ZHOU Q X, REN A Z, LI D C. Agrobacterium tumefaciens-mediated transformation of Fusarium verticillioides and T-DNA insertional mutagenesis of the fungus. Mycosystema, 2008, 27(2): 258-266. (in Chinese)
[47]
吴磊, 王晓鸣, 徐荣旗, 李洪杰. 利用红色荧光蛋白标记的轮枝镰孢研究病原菌对玉米根系的系统侵染和定殖. 作物学报, 2011, 37(5): 793-802.
WU L, WANG X M, XU R Q, LI H J. Root infection and systematic colonization of DsRed-labelled Fusarium verticillioides in maize. Acta Agronomica Sinica, 2011, 37(5): 793-802. (in Chinese)
[48]
张小飞, 李晓, 崔丽娜, 邹成佳, 彭云良, 杨晓蓉. 轮枝镰孢菌的绿色荧光蛋白基因标记. 西南农业学报, 2014, 27(6): 2374-2376.
ZHANG X F, LI X, CUI L N, ZOU C J, PENG Y L, YANG X R. Green fluorescent protein gene transformation on Fusarium verticillioides. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2374-2376. (in Chinese)
[49]
WILSON R A, TALBOT N J. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 2009, 7(3): 185-195.

doi: 10.1038/nrmicro2032
[50]
RYDER L S, DAGDAS Y F, KERSHAW M J, VENKATARAMAN C, MADZVAMUSE A, YAN X, CRUZ-MIRELES N, SOANES D M, OSES-RUIZ M, STYLES V, SKLENAR J, MENKE F L H, TALBOT N J. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 2019, 574(7778): 423-427.

doi: 10.1038/s41586-019-1637-x
[51]
RYDER L S, DAGDAS Y F, MENTLAK T A, KERSHAW M J, THORNTON C R, SCHUSTER M, CHEN J, WANG Z, TALBOT N J. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3179-3184.
[52]
WILSON R A, GIBSON R P, QUISPE C F, LITTLECHILD J A, TALBOT N J. An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21902-21907.
[53]
JEON J, GOH J, YOO S, CHI M H, CHOI J, RHO H S, PARK J, HAN S S, KIM B R, PARK S Y, KIM S, LEE Y H. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 2008, 21(5): 525-534.

doi: 10.1094/MPMI-21-5-0525 pmid: 18393612
[54]
CAI Y, LIU X, SHEN L, WANG N, HE Y, ZHANG H, WANG P, ZHANG Z. Homeostasis of cell wall integrity pathway phosphorylation is required for the growth and pathogenicity of Magnaporthe oryzae. Molecular Plant Pathology, 2022, 23(8): 1214-1225.

doi: 10.1111/mpp.v23.8
[55]
顾卓侃, 李玲, 王教瑜, 柴荣耀, 王艳丽, 张震, 毛雪琴, 邱海萍, 孙国昌. 利用卡氏白和尼罗红染色观察稻瘟病菌有性世代的结构. 中国水稻科学, 2016, 30(6): 668-672.

doi: 10.16819/j.1001-7216.2016.6035
GU Z K, LI L, WANG J Y, CHAI R Y, WANG Y L, ZHANG Z, MAO X Q, QIU H P, SUN G C. Observation of sexual structure of Magnaporthe oryzae via calcofluor white and Nile red staining. Chinese Journal of Rice Science, 2016, 30(6): 668-672. (in Chinese)
[56]
郭晓宇, 李玲, 董波, 王教瑜, 柴荣耀, 张震, 毛雪琴, 邱海萍, 郝中娜, 王艳丽, 孙国昌. 利用荧光蛋白标记研究稻瘟病菌有性世代的细胞结构. 中国细胞生物学学报, 2018, 40(7): 1138-1145.
GUO X Y, LI L, DONG B, WANG J Y, CHAI R Y, ZHANG Z, MAO X Q, QIU H P, HAO Z N, WANG Y L, SUN G C. Lighting the cellular structures of sexual generation in Magnaporthe oryzae with fluorescent proteins and fluorescent dyes. Chinese Journal of Cell Biology, 2018, 40(7): 1138-1145. (in Chinese)
[57]
KAKSONEN M, SUN Y, DRUBIN D G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell, 2003, 115(4): 475-487.

pmid: 14622601
[58]
LI X, GAO C, LI L, LIU M, YIN Z, ZHANG H, ZHENG X, WANG P, ZHANG Z. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2017, 13(6): e1006449.

doi: 10.1371/journal.ppat.1006449
[59]
GU Q, CHEN Y, LIU Y, ZHANG C, MA Z. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytologist, 2015, 206(1): 315-328.

doi: 10.1111/nph.2015.206.issue-1
[60]
ZHANG Y, CHOI Y E, ZOU X, XU J R. The FvMK mitogen- activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Fungal Genetics and Biology, 2011, 48(2): 71-79.

doi: 10.1016/j.fgb.2010.09.004
[61]
ZHANG C, WANG J, TAO H, DANG X, WANG Y, CHEN M, ZHAI Z, YU W, XU L, SHIM W B, LU G, WANG Z. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. Frontiers in Microbiology, 2015, 6: 1096.

doi: 10.3389/fmicb.2015.01096 pmid: 26500635
[1] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[2] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[3] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[4] SHA RenHe,LAN LiMing,WANG SanHong,LUO ChangGuo. The Resistance Mechanism of Apple Transcription Factor MdWRKY40b to Powdery Mildew [J]. Scientia Agricultura Sinica, 2021, 54(24): 5220-5229.
[5] LI QinCheng,SHI Jie,HE KangLai,WANG ZhenYing. Effects of Chemical Control of Ear Borers on Reducing Fusarium verticillioides Ear Rot and Fumonisin Level [J]. Scientia Agricultura Sinica, 2021, 54(17): 3702-3711.
[6] QI Yue,LÜ JunYuan,ZHANG Yue,WEI Jie,ZHANG Na,YANG WenXiang,LIU DaQun. Puccinia triticina Effector Protein Pt18906 Triggered Two-Layer Defense Reaction in TcLr27+31 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2371-2384.
[7] SUN Hua,MA HongXia,DING MengJun,LI Po,SHI Jie,LIU ShuSen. Construction and Evaluation of ATMT Mutant Library of Fusarium verticillioides [J]. Scientia Agricultura Sinica, 2019, 52(8): 1380-1388.
[8] TAN Wei-ping, PANG Xue-qun, ZHANG Zhao-qi, HUANG Xue-mei. Accumulation of Reactive Oxygen Species Related to Disease Resistance Induced by BABA in Postharvest Banana (Musa AAA. cv. Brazil) Fruit [J]. Scientia Agricultura Sinica, 2014, 47(16): 3290-3299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!