Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (10): 1827-1837.doi: 10.3864/j.issn.0578-1752.2017.10.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

A Meta-Analysis of Effects of Biochar Properties and Management Practices on Crop Yield

XIAO Jing1,2, XU Hu2, CAI AnDong2, HUANG Min1, ZHANG Qi3, SUN Nan2, ZHANG WenJu2, XU MingGang2   

  1. 1School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070; 2Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081; 3Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232
  • Received:2016-10-20 Online:2017-05-16 Published:2017-05-16

Abstract: 【Objective】A large number of studies have indicated that application of biochar in cropland has significant effects on crop yield due to its unique physical and chemical properties. It is of important significance to quantify the effects of management practices and biochar quality on crop yield by statistical analysis of large sample numbers.【Method】By collecting global relevant published literatures, 97 relative independent studies with 819 paired datasets on biochar’s effects of crop growth were selected. A meta-analysis was undertaken to quantify the effect of biochar characteristics (e.g., raw material, pyrolysis temperature, C/N, pH etc.) and artificial application management practices (e.g., application amount and duration), soil properties (soil texture and pH) on the crop yield improvement.【Result】Results showed that biochar could improve crop yield significantly by 15.0% in average compared with the control. As for crop types, the effect of biochar on crop yield was significantly different: The yield increase of cash crops (25.3%) was significantly higher than that of grain crops (10.0%). The characteristics of biochar had a significant impact on crop yield. Biochar produced with pyrolysis temperature lower than 600℃, pH over 7, and C/N value between 20-300, obtained significant increase in crop yield ranging from 9.2% to 26.6%. Moreover, the improved percentage of crop yield decreased with increase in pyrolysis temperature and biochar C/N. As for different soil textures and acidities, the order of yield-improving effect was clay soil > sandy soil > loamy soil. The yield-improving effect of biochar application for acid soil (29.2%) was 7.9 and 2.5 times of that for neutral and alkaline soil. Under the condition of management practices, biochar application increased crop yield significantly (by 18.0%) at rates less than 10.0 t·hm-2. However, there was no significant effect on crop yield when the application rate was more than 80.0 t·hm-2. The response ratio of biochar application on crop yield decreased with increase in the application duration. Six months to two years after biochar application increased crop yield by about 13.4%-17.5%, whereas after more than 2 years, the response ratio reduced to 9.6%.【Conclusion】The effect of biochar on crop yield varied according to variation in biochar quality and application rate and duration. Choosing biochar in specific quality for application can not only achieve sustainable improvement in crop production, but also minimalize the cost and improve economic efficiency according to crop types and soil texture. This result would provide an option for the development of sustainable agricultural management practices.

Key words: biochar, crop yield, improving effect, soil texture, management, application rate, application duration, meta-analysis

[1]    IBI. Standardized product definition and product testing guidelines  for biochar that is used in soil. International Biochar Initiative, IBI-STD-01, 2012.
[2]    Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad J O, Thies J, Luizão F J, Petersen J, Neves E G. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 2006, 70(5): 1719-1730.
[3]    Agegnehu G, Bass A M, Nelson P N, Muirhead B, Wright G, Bird M I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agriculture Ecosystems & Environment, 2015, 213: 72-85.
[4]    Glaser B, Lehmann, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: A review. Biology and Fertility of Soils, 2002, 35(4): 219-230.
[5]    Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant and Soil, 2010, 337(1/2): 1-18.
[6]    Chan K Y, Van Z L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 2008, 46(5): 437-444.
[7]    Zwieten L V, Kimber S, Downie A, Morris S, Petty S, Rust J, Chan K Y. A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Australian Journal of Soil Research, 2010, 48(6): 569-576.
[8]    Hossain M K, Strezov V, Chan K Y, Nelson P F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 2010, 78(9): 1167-1171.
[9]    高敬尧, 王宏燕, 许毛毛. 生物炭施入对农田土壤及作物生长影响的研究进展. 江苏农业科学, 2016, 44(10): 10-15.
GAO J Y, WANG H Y, XU M M, DAI L, FENG L, YUAN J H, XU H T, SUN Y, WU Y W. Research progress on the effect of biochar application on soil and crop growth in farmland. Journal of Jiangsu Agricultural Sciences, 2016, 44(10): 10-15. (in Chinese)
[10]   Baronti S, Alberti G, Genesio L, Gennaro F D, Liu J, Miglietta F, Peressotti A, Vaccari F P. The Italian Biochar Initiative: Effects on soil fertility and on crops production//2nd International Biochar Conference-IBI. Newcastle, 2008.
[11]   张娜, 李佳, 刘学欢, 刘杨, 王永平, 梁海燕, 廖允成. 生物炭对夏玉米生长和产量的影响. 农业环境科学学报, 2014, 33(8): 1569-1574.
Zhang N, Li J, Liu X H, Liu Y, Wang Y P, Liang H Y, Liao Y C. Effects of biochar on growth and yield of summer maize. Journal of Agro-Environment Science, 2014, 33(8): 1569-1574. (in Chinese)
[12]   Steiner C, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 2007, 291(1): 275-290.
[13]   吴崇书, 邱志腾, 章明奎. 施用生物质炭对不同类型土壤物理性状的影响. 浙江农业科学, 2014(10): 1617-1619.
Wu C S, Qiu Z T, Zhang M K. Effects of biochar application on soil physical properties. Journal of Zhejiang Agricultural Sciences, 2014(10): 1617-1619. (in Chinese)
[14]   Uzoma K C, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 2011, 27(2): 205-212.
[15]   唐光木, 葛春辉, 徐万里, 王西和, 郑金伟, 李恋卿, 潘根兴. 施用生物黑炭对新疆灰漠土肥力与玉米生长的影响. 农业环境科学学报, 2011, 30(9): 1797-1802.
Tang G M, Ge C H, Xu W L, Wang X H, Zheng J W, Li L Q, Pan G X. Effect of applying biochar on the quality of grey desert soil and maize cropping in Xinjiang, China. Journal of Agro-Environment Science, 2011, 30(9): 1797-1802. (in Chinese)
[16]   卜晓莉, 薛建辉. 生物炭对土壤生境及植物生长影响的研究进展. 生态环境学报, 2014, 23(3): 535-540.
Bu X L, Xue J H. Biochar effects on soil habitat and plant growth: A review. Ecology and Environmental Sciences, 2014, 23(3): 535-540. (in Chinese)
[17]   Vaccari F P, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 2011, 34(4): 231-238.
[18]   Major J, Rondon M, Molina D, Riha S J, Lehmann J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 2010, 333(1): 117-128.
[19]   Yang Y, Ma S, Zhao Y, Jing M, Xu Y Q, Chen J W. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in northern China. Sustainability, 2015, 7(10): 13713-13725.
[20]   Jeffery S, Verheijen F G A, Velde M V D, Bastos A C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems & Environment, 2011, 144(1): 175-187.
[21]   Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L Q, Pan G X, Paz-Ferreiro J. Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant and Soil, 2013, 373(1): 583-594.
[22]   Liu Z, Chen X, Jing Y, LI Q, ZHANG J. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena, 2014, 123: 45-51.
[23]   Dong D, Yang M, Wang C, WANG H, LI Y, LUO J. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. Journal of Soils & Sediments, 2013, 13(8): 1450-1460.
[24]   郭明, 李新. Meta分析及其在生态环境领域研究中的应用. 中国沙漠, 2009, 29(5): 911-919.
Guo M, Li X. Meta-analysis: A new quantitative research approach in eco-environmental sciences. Journal of Desert Research, 2009, 29(5): 911-919. (in Chinese)
[25]   孙向阳. 土壤学. 北京: 中国林业出版社, 2005.
Sun X Y. Soil Science. Beijing: China Forestry Publishing House, 2005. (in Chinese)
[26]   吴伟祥, 孙雪, 董达, 王海龙. 生物质炭土壤环境效应. 北京: 科学出版社, 2015: 100-143.
Wu W X, Sun X, Dong D, Wang H L. Environmental effects of biochar in soil. Beijing: Science Press, 2015: 100-143. (in Chinese)
[27]   Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. Global Change Biology Bioenergy, 2013, 5(2): 202-214.
[28]   彭少麟, 郑凤英. Meta分析及MetaWin软件. 生态环境学报, 1999(4): 295-299.
Peng S L, Zheng F Y. Introduction of Meta Win software. Ecology and Environmental Sciences, 1999(4): 295-299. (in Chinese)
[29]   ROSENBERG M S, ADAMS D C, GUREVITCH J. MetaWin: Statistical software for meta-analysis version 2.0. Sunderland: Sinauer Associates, 2000.[P1] 
[30]   Adams D C, Gurevitch J, Rosenberg M S. Resampling tests foe meta-analysis of ecological data. Ecology, 1997, 78(4): 1277-1283.
[31]   蔡岸冬, 张文菊, 杨品品, 韩天富, 徐明岗. 基于Meta-Analysis研究施肥对中国农田土壤有机碳及其组分的影响. 中国农业科学, 2015, 48(15): 2995-3004.
Cai A D, Zhang W J, Yang P P, Han T F, Xu M G. Effect degree of fertilization practices on soil organic carbon and fraction of croplands in China—based on Meta-analysis. Scientia Agricultura Sinica, 2015, 48(15): 2995-3004. (in Chinese)
[32]   李秋霞, 陈效民, 靳泽文, 黄欠如, 张佳宝, 朱泊静, 张誉译, 沈晓姝. 生物质炭对旱地红壤理化性状和作物产量的持续效应. 水土保持学报, 2015, 29(3): 208-213.
Li Q X, Chen X M, Ji Z W, Huang Q R, Zhang J B, Zhu B J, Zhang Y Y, Shen X S. Persistent effects of biochar on soil physicochemical properties and crop yields in upland red soil. Journal of Soil and Water Conservation, 2015, 29(3): 208-213. (in Chinese)
[33]   刘晓雨. 施用有机物料对农田固碳减排及生产力的影响: 田间试验及整合研究[D]. 南京: 南京农业大学, 2013.
Liu X Y. Effects of soil organic amendment on productivity and greenhouse gas mitigation of croplands: Filed studies and synthetic analysis[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)
[34]   黄婷, 倪杰强, 许文霞, 翟勇, 冶军, 侯振安. 三种生物质炭对北疆棉田土壤氮素平衡及棉花产量的影响. 棉花学报, 2015, 27(6): 595-600.
Huang T, Ni J Q, Xu W X, Zhai Y, Ye J, Hou Z A. Effects of addition of three types of biochar on the soil nitrogen balance and cotton yield. Cotton Science, 2015, 27(6): 595-600. (in Chinese)
[35]   Alexis M A, Rasse D P, Rumpel C, Bardoux G, Péchot N, Schmalzer P, Drake B, Mariotti A. Fire impact on C and N losses and charcoal production in a scrub oak ecosystem. Biogeochemistry, 2007, 82(2): 201-216.
[36]   赵世翔, 姬强, 李忠徽, 王旭东. 热解温度对生物质炭性质及其在土壤中矿化的影响. 农业机械学报, 2015, 46(6): 183-192.
Zhao S X, Ji Q, Li Z H, Wang X D. Characteristics and mineralization in soil of apple-derived biochar producecd at different temperatures. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6): 183-192. (in Chinese)
[37]   Hmid A, Mondelli D, Fiore S, Fanizzi F P, Chami Z A, Dumontet S. Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass & Bioenergy, 2014, 71: 330-339.
[38]   Ahmad M, Lee S S, Dou X M, Mohan D, Sung J K, Yang J E. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 2012, 118(8): 536-544.
[39]   李飞跃, 汪建飞, 谢越, 李贺, 李孝良, 李粉茹. 热解温度对生物质炭碳保留量及稳定性的影响. 农业工程学报, 2015, 31(4): 266-271.
Li F Y, Wang J F, Xie Y, Li H, Li X L, Li F R. Effects of pyrolysis temperature on carbon retention and stability of biochar. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 266-271. (in Chinese)
[40]   Angst T E, Patterson C J, Reay D S, Anderson P, Peshkur T A, Sohi S P. Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. Journal of Environmental Quality, 2013, 42(3): 672-682.
[41]   Ameloot N, Neve S D, Jegajeevagan K, Yildiz G, Buchan D, Funkuin Y N, Prins W, Bouchaert L, Sleutel S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology & Biochemistry, 2013, 57(3): 401-410.
[42]   Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 2011, 102(3): 3488-3497.
[43]   勾芒芒, 屈忠义, 杨晓, 张栋梁. 生物质炭对砂壤土节水保肥及番茄产量的影响研究. 农业机械学报, 2014, 45(1): 136-142.
Gou M M, Qu Z Y, Yang X, Zhang D L. Study on the effects of biochar on saving water, preserving fertility and tomato yield. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(1): 136-142. (in Chinese)
[44]   饶霜, 卢阳, 黄飞, 蔡一霞, 蔡昆争. 生物炭对土壤微生物的影响研究进展. 生态与农村环境学报, 2016, 32(1): 53-59.
Rao S, Lu Y, Huang F, Cai Y X, Cai K Z. A review of researches on effects of biochars on soil microorganisms. Journal of Ecology and Rural Environment, 2016, 32(1): 53-59. (in Chinese)
[45] Gul S, Whalen J K, Thomas B W, Sachdeva V, Deng H G. Physico-chemical properties and microbial responses in biochar- amended soils: Mechanisms and future directions. Agriculture Ecosystems & Environment, 2015, 206: 46-59.
[46]   Stewart C E, Zheng J Y, Botte J, Cotrufo M F. Co- generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Global Change Biology Bioenergy, 2013, 5(2): 153-164.
[47]   李中阳, 齐学斌, 樊向阳, 吴海卿. 生物质炭对冬小麦产量、水分利用效率及根系形态的影响. 农业工程学报, 2015(12): 119-124.
Li Z Y, Qi X B, Fan X Y, Wu H Q. Influences of biochars on growth, yield, water use efficiency and root morphology of winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 119-124. (in Chinese)
[48]   Khan M A, Kim K W, Wang M, Lim B K, Lee W H, Lee J Y. Nutrient-impregnated charcoal: An environmentally friendly, slow- release fertilizer. Environment Systems and Decisions, 2008, 28(3): 231-235.
[49]   Hamer U, Marschner B, Brodowski S, AMELUN G W. Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 2004, 35(7): 823-830.
[50]   Yao F X, Arbestain M C, Virgel S, Blanco F, Arostegui J, Maciá-Agulló J A, Macías F. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxlet reactor. Chemosphere, 2010, 80(7): 724-732.
[51]   Spokas K A. Impact of biochar field aging on laboratory greenhouse gas production potentials. Global Change Biology Bioenergy, 2013, 5(2): 165-176.
[1] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[2] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[3] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[4] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[5] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[6] MI GuoHua,HUO YueWen,ZENG AiJun,LI GangHua,WANG Xiu,ZHANG FuSuo. Integration of Agricultural Machinery and Agronomic Techniques for Crop Nutrient Management in China [J]. Scientia Agricultura Sinica, 2022, 55(21): 4211-4224.
[7] LI YuHao,WANG HongYe,CUI ZhenLing,YING Hao,QU XiaoLin,ZHANG JunDa,WANG XinYu. Spatial-Temporal Variation of Cultivated Land Soil Basic Productivity for Main Food Crops in China [J]. Scientia Agricultura Sinica, 2022, 55(20): 3960-3969.
[8] HU ZhiQiang,SONG XiaoYu,QIN Lin,LIU Hui. Study on Seasonal Grazing Management Optimal Model in Alpine Desert Steppe [J]. Scientia Agricultura Sinica, 2022, 55(19): 3862-3874.
[9] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[10] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[11] SHEN Zhe,ZHANG RenLian,LONG HuaiYu,XU AiGuo. Research on Spatial Distribution of Soil Texture in Southern Ningxia Based on Machine Learning [J]. Scientia Agricultura Sinica, 2022, 55(15): 2961-2972.
[12] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[13] MENG Yi,WENG WenAn,CHEN Le,HU Qun,XING ZhiPeng,WEI HaiYan,GAO Hui,HUANG Shan,LIAO Ping,ZHANG HongCheng. Effects of Water-Saving Irrigation on Grain Yield and Quality: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(11): 2121-2134.
[14] BIAN RongJun,LIU XiaoYu,ZHENG JuFeng,CHENG Kun,ZHANG XuHui,LI LianQing,PAN GenXing. Chemical Composition and Bioactivity of Dissolvable Organic Matter in Biochars [J]. Scientia Agricultura Sinica, 2022, 55(11): 2174-2186.
[15] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!