Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (7): 1325-1345.doi: 10.3864/j.issn.0578-1752.2016.07.010

• HORTICULTURE • Previous Articles     Next Articles

Analysis of Basic Leucine Zipper Genes and Their Expression During Bud Dormancy in Apple (Malus×domestica)

SUN Ming-yue, ZHOU Jun, TAN Qiu-ping, FU Xi-ling, CHEN Xiu-de, LI Ling, GAO Dong-sheng   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/National Research Center for Apple Engineering and Technology/State Key Laboratory of Crop Biology/Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Taian 271018, Shandong
  • Received:2015-11-26 Online:2016-04-01 Published:2016-04-01

Abstract: 【Objective】In this study, putative bZIP transcription factor-encoding genes in the apple (Malus×domestica Borkh.) genome were identified, so as to provide a basis for studying the theoretical roles of bZIP genes in the bud dormancy, and to provide valuable information for bZIP genes in apple. 【Method】 The Hidden Markov Model profiles of the bZIP domains (PF00170 and PF07716) downloaded from Pfam were used to search the database using HMMER, ver. 3.0 with the default E-value. The obtained amino acid sequences were analyzed with the bioinformatics softwares, including Clustal Omega, MEGA6.0, MapInspect, DNAMAN 6.0 and MEME4.10.2. Furthermore, Microarray analysis and qRT-PCR results indicated that many MdbZIP genes may be involved in regulating bud dormancy in different cultivar of apples. 【Result】 In Total 120 MdbZIP genes were found in the apple genome. Phylogenetic analyses of the genes based on A. thaliana counterparts indicated that the transcription factors can be categorized into 10 different groups (Groups A–I and S), Chromosome mapping analysis showed that 109 MdbZIP genes were distributed unevenly on 17 chromosomes. Except for 11 genes that were not located on chromosomes, the largest number of MdbZIP genes were found on chromosomes 8 (thirteen genes), only 1 genes located on chromosome 1, some chromosomal regions had a relatively high density of MdbZIP genes. The results of gene structure analysis revealed that MdbZIP gene contained 0-23 exons, 23 bZIP genes were intronless and were found in Groups S (nine genes) and F (one gene), bZIP gene structure were highly conserved in apples. Conserved motif analysis showed that the conserved motifs 1, which specify the bZIP domain were observed in all apple bZIP proteins, motif 10 and 14 as the known domain were observed in Group D and G, respectively. Furthermore, microarray data indicated that many MdbZIP genes may be involved in regulating bud dormancy release. And qRT-PCR results indicated that ABA induce eight members of group A expression in high-chill and low-chill apples, but the largest number of differentially expressed genes was found in group D with cold temperatures. 【Conclusion】 These results suggested that MdbZIP gene family was highly and structurally conserved, and involved in abscisic acid (ABA) signaling and cold stresses thereby possibly involved into the regulation of bud dormancy in apples.

Key words: apple (Malus×domestica Borkh.) , bZIP transcription factor, bud dormancy, phylogenetic analysis, sequence alignment, microarray analysis, qRT-PCR

[1]    Porto D D, Bruneau M, Perini P, Anzanello R, Renou J P, dos  Santos H P, Fialho F B. Revers LF6Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes. Journal of Experimental Botany, 2015, 66(9): 2659-2672.
[2]    Faust M, Erez A, Rowland L J, Wang S Y, Norman H A. Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. Hortscirnce, 1997, 32: 623-629.
[3]    李玲. 桃花芽休眠解除SSH文库构建及相关基因的功能分析[D]. 山东泰安: 山东农业大学, 2011.
Li L. Construction of the suppression subtractive hybridization library and analysis of related genes of floral buds in Prunus persica during dormancy-releasing [D]. Tai'an: Shandong Agricultural University, 2011. (in Chinese)
[4]    Erez A. Bud Dormancy; Phenomenon, Problems and Solutions in the Tropics and Subtropics. Springer Netherlands, 2000: 17-48.
[5]    Nijhawan A, Jain M, Tyagi A K, Khurana J P. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiology, 2008, 146(2): 333-350.
[6]    Perez-Rodriguez P, Riano-Pachon D M, Correa L G, Rensing S A, Kersten B, Mueller-Roeber B. PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research, 2010, 38: D822-D827.
[7]    Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D. Genome-wide analysis of bZIP-encoding genes in maize. Dna Research An International Journal for Rapid Publication of Reports on Genes & Genomes, 2012, 19(6): 463-476.
[8]    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 2002, 7(3): 106-111.
[9]    Zheng C, Halaly T, Acheampong A K, Takebayashi Y, Jikumaru     Y, Kamiya Y, Or E. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. Journal of Experimental Botany, 2015, 66(5): 1527-1542.
[10]   强妮花, 惠伟. 活性氮、活性氧及植物激素在种子休眠解除中的作用及相互关系研究进展. 植物生理学报, 2011, 47(7): 655-660.
Qiang N H, Hui W. Research progress on the role and correlations of reactive nitrogen species (RNS), reactive oxygen species (ROS) and plant hormones in seed dormancy. Plant Physiology Journal, 2011, 47(7): 655-660. (in Chinese)
[11]   Zhu Y, Li Y, Xin D, Chen W, Shao X, Wang Y, Guo W. RNA-Seq-based transcriptome analysis of dormant flower buds of Chinese cherry (Prunus pseudocerasus). Gene, 2015, 555(2): 362-376.
[12]   Saito T, Bai S, Imai T, Ito A, Nakajima I, Moriguchi T. Histone modification and signaling cascade of the dormancy-associated mads-box gene, ppmads13-1, in japanese pear (Pyrus pylifolia) during endodormancy. Plant Cell Environment, 2014, 38(6): 157-1166.
[13]   张茂迎, 宗晓娟, 李德全. 植物mapk级联途径参与调控aba信号转导. 生命科学, 2010, 8(8): 736-742.
Zhang M Y, Zong Xiao J, Li D Q. Mitogen-activated protein kinase cascade is involved in abscisic acid signal transduction in plant. Chinese Bulletin of Life Sciences, 2010, 8(8): 736-742. (in Chinese)
[14]   Metzger J D. Hormones and Reproductive Development. Plant Hormones. Springer Netherlands, 1995: 617-648.
[15]   Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12(4): 599-609.
[16]   Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. Repression of shoot growth, a bzip transcriptional activator, regulates cell elongation by controlling the level of gibberellins. The Plant Cell, 2000, 12(6): 901-915.
[17]   Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X W. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell, 2007, 19: 731-749.
[18]   Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant Journal, 2004, 38(6): 940-953.
[19]   Bielenberg D G, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard G  L, Scorza R, Abbott A G. Sequencing and annotation of the evergrowing locus in peach (Prunus persica [L.] Batsch) reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes, 2008, 4: 495-507.
[20]   Srinivasan C, Dardick C, Callahan A, Scorza R. Plum (Prunus domestica) trees transformed with poplar ft1 result in altered architecture, dormancy requirement, and continuous flowering. Plos One, 2012, 7: e40715.
[21]   Fu X L, Xiao W, Wang D L, Chen M, Tan Q P, Li L, Chen X D, Gao D S. Roles of endoplasmic reticulum stress and unfolded protein response associated genes in seed stratification and bud endodormancy during chilling accumulation in Prunus persica. Plos One, 2014, 9(7): e101808.
[22]   Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228(2): 225-240.
[23]   Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang S Y. Genomewide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. Journal of Integrative Plant Biology, 2011, 53(3): 212-231.
[24]   Liu J, Chen N, Chen F, Cai B, Santo S D, Tornielli G B, Pezzotti M, Cheng Z M. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genomics, 2014, 15(8): 687-694.
[25]   Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated        apple (Malus×domestica Borkh.). Nature Genetics, 2010, 42(10): 833-839.
[26]   Cao Z H, Zhang S Z, Wang R K, Zhang R F, Hao Y J. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants. Plos One, 2013, 8(7): e69955.
[27]   谷彦冰, 冀志蕊, 迟福梅, 乔壮, 徐成楠, 张俊祥. 苹果wrky基因家族生物信息学及表达分析. 中国农业科学, 2015, 48(16): 3221-3238.
Gu Y B, Yi Z R, Chi F M, Qiao Z, Xu C N, Zhang J X. Bioinformatics and expression analysis of the WRKY gene family in apple. Scientia Agricultura Sinica, 2013, 48(16): 3221-3238. (in Chinese)
[28]   Sievers F, Higgins D G. Clustal omega, accurate alignment of very large numbers of sequences//Multiple Sequence Alignment Methods. Humana Press, 2014: 105-116.
[29]   Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z. Genome-wide identification and analysis of the MADS-box gene family in apple. Gene, 2015, 555(2): 277-290.
[30]   Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. Mega6: molecular evolutionary genetics analysis version 6.0. Molecular Biology & Evolution, 2013, 30(4): 2725-2729.
[31]   Choi H, Hong J, Ha J, Kang J, Kim S Y. ABFs, a family of ABA-responsive element binding factors. Journal of Biological Chemistry, 2000, 275(3): 1723-1730.
[32]   Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis basic leucine zipper transcription    factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the USA, 2000, 97(21): 11632-11637.
[33]   Nakase M, Aoki N, Matsuda T, Adachi T. Characterization of a novel rice bZIP protein which binds to the a-globulin promoter. Plant Molecular Biology, 1997, 33(3): 513-522.
[34]   Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: A potential negative regulator of cold and drought stress response in rice. Planta, 2012, 235(6): 1157-1169.
[35]   Singh K B, Foley R C, On˜ate-Sa´nchez L. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 2002, 5(5): 430-436.
[36]   Schindler U, Menkens A E, Beckmann H, Ecker J R, Cashmore A R. Heterodimerization between lightregulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. Embo Journal, 1992, 11(4): 1261-1273.
[37]   Ang L H, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Molecular Cell, 1998, 1(2): 213-222.
[38]   Wang N, Zheng Y, Xin H, Fang L, Li S. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. Plant Cell Reports, 2013, 32(1): 61-75.
[39]   Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABFSnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum, 2013, 147(1): 15-27.
[40]   Bentsink L, Jowett J, Hanhart C J, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 2006, 103(45): 17042-17047.
[41]   Annikki W, Päivi K, Päivi R. Photoperiodic induction of dormancy and freezing tolerance in betula pubescens. involvement of aba and dehydrins. Physiologia Plantarum, 1997, 100(1): 119-125.
[42]   王海波, 高东升, 王孝娣, 李疆. 赤霉素和脱落酸与桃芽自然休眠诱导. 果树学报, 2006, 23(4): 599-601.
Wang H B, Gao D S, Wang X D, Li J. Role of gibberellin and abscisic acid in peach bud endodormancy induction. Journal of Fruit Science, 2006, 23(4): 599-601. (in Chinese)
[43]   Garcia M E, Lynch T, Peeters J, Snowden C, Finkelstein R. A small plant-specific protein family of abi five binding proteins (afps) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Molecular Biology, 2008, 67(6): 643-658.
[44]   束怀瑞. 苹果学. 北京: 中国农业出版社, 1999: 245-249.
Shu H R. Apple Science. Beijing: China Agriculture Press, 1999: 245-249. (in Chinese)
[45]   Hwang I, Jung H J, Park J I, Yang T J, Nou I S. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response. Genomics, 2014, 104(3): 194-202.
[46]   Ito K, Kusano T, Tsutsumi K I. A cold-inducible bZIP protein gene in radish root regulated by calcium- and cycloheximide-mediated signals. Plant Science, 1999, 142(1): 57-65.
[1] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[2] XIE HaiKun, JIAO Jian, FAN XiuCai, ZHANG Ying, JIANG JianFu, SUN HaiSheng, LIU ChongHuai. Assembling and Characteristic Analysis of the Complete Chloroplast Genome of Vitis vinifera cv. Cabernet Sauvignon from High-Throughput Sequencing Data [J]. Scientia Agricultura Sinica, 2017, 50(9): 1655-1665.
[3] WANG Lin, LI XinFeng, XU YuMei, CHANG YinDong, WANG JianMing. Analysis of Population Distribution and Genetic Variation of Plant Pathogenic Fusarium in Shanxi Province [J]. Scientia Agricultura Sinica, 2017, 50(10): 1802-1816.
[4] WANG Ye, HAN Lei, DONG Jie, HUANG JiaXing, WU Jie. Identification and Characteristics of Odorant Receptors in Bumblebee, Bombus lantschouensis [J]. Scientia Agricultura Sinica, 2017, 50(10): 1904-1913.
[5] QIN Yu-hai, ZHANG Xiao-hong, FENG Lu, LI Wei-wei, XU Zhao-shi, LI Lian-cheng, ZHOU Yong-bin, MA You-zhi, DIAO Xian-min, JIA Guan-qing, CHEN Ming, MIN Dong-hong. Response of Millet Transcription Factor Gene SibZIP42 to High Salt and ABA Treatment in Transgenic Arabidopsis [J]. Scientia Agricultura Sinica, 2016, 49(17): 3276-3286.
[6] WU Xiang-yang, CHENG Chao-ze, Lü Gao-qiang, WANG Xin-yu. Identification and Characterization of the AQP Gene Family in Sesame [J]. Scientia Agricultura Sinica, 2016, 49(10): 1844-1858.
[7] ZHAO Qing-qing, LI Qun-hui, ZHU Jie, ZHONG Lei, LIU Jing-jing, GU Min, WANG Xiao-quan, LIU Wen-bo, LIU Xiu-fan. Genome Sequencing and Genetic Analysis of H4N8 Subtype Avian Influenza Virus Isolated from Duck [J]. Scientia Agricultura Sinica, 2015, 48(15): 3040-3049.
[8] XU Hui-yang, XU Bang-feng, CHEN Yan, SUI Jin-yu, YANG Huan-liang, YIN Hang, YANG Da-wei, QIAO Chuan-ling, CHEN Hua-lan. Phylogenetic Analysis and Molecular Characteristics of an H1N1 Subtype Swine Influenza Virus [J]. Scientia Agricultura Sinica, 2015, 48(15): 3071-3078.
[9] GE Song, JIANG Wan, HE Sheng-hu, YU Yong-tao, ZHANG Lei-lei, GUO Shu-qiang, WANG Jing. Isolation and Identification of Dermatophytes from Beef Cattle in Ningxia [J]. Scientia Agricultura Sinica, 2015, 48(14): 2876-2883.
[10] GONG Xiao-Dong-1, ZHANG Xiao-Yu-1, TIAN Lan-1, WANG Xing-Yi-1, LI Po-2, ZHANG Pan-1, WANG Yue-1, FAN Yong-Shan-3, HAN Jian-Min-1, GU Shou-Qin-1, DONG Jin-Gao-1. Genome-Wide Identification MAPK Superfamily and Establishment of the Model of MAPK Cascade Pathway in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2014, 47(9): 1715-1724.
[11] YAN Wei1, SHEN Zhong-yuan, TANG Xu-dong, XU Li, LI Qian-long, XIAO Sheng-yan, YUE Ya-jie, FU Xu-liang. Sequencing and Phylogenetic Analysis of the RPB1 Gene of Nosema sp. PA [J]. Scientia Agricultura Sinica, 2014, 47(23): 4736-4744.
[12] LI Hui-feng, WANG Xiao-fei, RAN Kun, HE Ping, WANG Hai-bo, LI Lin-guang. Expression and Protein Interaction Analysis of Light Responsive bZIP Transcription Factor MdHY5 [J]. Scientia Agricultura Sinica, 2014, 47(21): 4318-4327.
[13] ZENG Ji-Wu, JIANG Bo, WU Bo, ZHONG Yun, CHENG Chun-Zhen, MU Hong-Na, GAN Lian-Sheng, PENG Cheng-Ji, ZHONG Guang-Yan, YI Gan-Jun. Morphological and Molecular Studies on a Wild Citrus ‘Longmen Xiangcheng’ [J]. Scientia Agricultura Sinica, 2014, 47(2): 334-343.
[14] AN Hai-Shan-1, YANG Ke-Qiang-1, 2 . Sequence Analysis of NBS-Type RGAs and Their Relationship with Anthracnose Resistance in Walnut [J]. Scientia Agricultura Sinica, 2014, 47(2): 344-356.
[15] ZHOU Zhe, ZHANG Cai-Xia, ZHANG Li-Yi, WANG Qiang, LI Wu-Xing, TIAN Yi, CONG Pei-Hua. Bioinformatics and Expression Analysis of the LysM Gene Family in Apple [J]. Scientia Agricultura Sinica, 2014, 47(13): 2602-2612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!