Scientia Agricultura Sinica ›› 2012, Vol. 45 ›› Issue (8): 1521-1531.doi: 10.3864/j.issn.0578-1752.2012.08.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect of P Deficiency on the Emergence of Astragalus L. Root Exudates and Mobilization of Sparingly Soluble Phosphorus

 LAN  Zhong-Ming, LIN  Xin-Jian, ZHANG  Wei-Guang, ZHANG  Hui, WU  Yi-Qun   

  1. 福建省农业科学院土壤肥料研究所/福建省农业科学院农业资源与环境中心,福州 350013
  • Received:2011-07-21 Online:2012-04-15 Published:2011-08-31

Abstract: 【Objective】 The objective of this study was to investigate the mobilization and uptake capacity of sparingly soluble phosphorus by root exudate of Astragalus L., and genotypic variation of different Astragalus L. in activation of sparingly soluble phosphorus. 【Method】 Hoagland nutrient solution culture was carried out to collect root exudate and test the mobilization of sparingly soluble phosphorus via concentrated vacuum rotary evaporator, and the content of organic acids was analyzed by high performance liquid chromatography (HPLC). 【Result】 Under the condition of P-deficiency stress, root radius from different genotypes of Astragalus L. reduced, while the root-shoot ratio and root surface area were significantly higher than P-supply. Root exudates were oxalic acid, tartaric acid, citric acid, malic acid and so on, but it mainly exuded oxalic acid. Under the condition of P-deficiency, secreation of oxalic was significantly different among variou genotypes, and the amout of organic acid secretion was significantly higher than P-supply. Minzi 1, Zhezi 5 and Minzi 6 in organic acid secretion were significantly higher than Yijiangzi, Yujiangdaye. Root exudates on insoluble Al-P and Fe-P had certain activation capacity under P-deficiency and P-supply. The activation P values for Al-P and Fe-P were 36.40-157.39 μg•g-1, 32.20-139.42 μg•g-1, and P-deficient root exudates on sparingly soluble phosphate was higher than P-supply, and activation capacity of Al-P was slightly higher than Fe-P. Through the activation of simulation experiment, it was confirmed that organic acids could mobilize sparingly soluble Al-P and Fe-P, and the difference was significant.【Conclusion】 Under P-deficiency stress, Astragalus L. exudated organic acids, which could significantly mobilize sparingly soluble phosphate. There were obvious differences among various genotypes, showing differences between Astragalus L. varieties. Cultivating Astragalus L. could be used to improve soil P-deficiency nutrient cycling in red soils region of southern China, but further research should be carried out to scientifically evaluate organic acids on the activation capacity of Al-P and Fe-P.

Key words: Astragalus L., root exudate, sparingly soluble phosphorus, mobilization, organic acid, P-deficiency stress

[1]林多胡, 顾荣申. 中国紫云英. 福州 : 福建科学出版社, 2000.

Lin D F, Gu R S. Chinese Milk Vetch. Fuzhou : Fujian Scientific Press, 2000. (in Chinese)

[2]普晓英, 赵大伟, 曾亚文, 杜  娟, 杨树明, 杨  涛, 赵春艳. 低磷胁迫下大麦磷高效基因型的筛选. 生态环境学报, 2010, 19(6): 1329-1333.

Pu X Y, Zhao D W, Zeng Y W, Du J, Yang S M, Yang T, Zhao C Y. Screening of genotypes with high phosphorus efficiency for barley under low phosphorus stress. Ecology and Environmental Sciences, 2010, 19(6): 1329-1333. (in Chinese)

[3]Hinsinger P. Bioavailability of soil inorganic P in the rhizo-sphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237(2): 173-195.

[4]Hocking P J. Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plants in acid soils. Advances in Agronomy, 2001, 74: 63-97.

[5]Gardner W K,  Parbery D G,  Barber D A. The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant and Soil, 1982, 68(1): 19-32.

[6]Gardner W K, Parbery D G, Barber D A. The acquisition of phosphorus by Lupinus albus L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface. Plant and Soil, 1982, 68(1): 33-41.

[7]Gardner W K, Barber D A, Parbery D G. The acquisition of phosphorus by Lupinus albus L. III . The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant and Soil, 1983, 70(1): 107-124.

[8]Ae N, Arihara J, Okada K, Yoshihara T, Johansen C. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science, 1990, 248(4954): 477-480.

[9]Subbarao G V, Ae N, Otani T. Genetic variation in acquisition, and utilization of phosphorus from iron-bound phosphorus in pigeon pea. Soil Science and Plant Nutrition, 1997, 43(3): 511-519.

[10]Gahoonia T S, Asmar F, Giese H, Gissel-Nielsen G, Nielsen N E. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. European Journal of Agronomy, 2000, 12(3/4): 281-289.

[11]Shen H, Yan X L, Zhao M, Zheng S L, Wang X R. Exudation of organic acids in common bean as related to mobilization of aluminum- and iron-bound phosphates. Environmental and Experimental Botany, 2002, 48(1): 1-9.

[12]赵  明, 沈  宏, 严小龙. 不同菜豆基因型根系对难溶性磷的活化吸收. 植物营养与肥料学报, 2002, 8(4): 435-440.

Zhao M, Shen H, Yan X L. Mobilization and uptake of insoluble phosphorus by different common bean genotypes. Plant Nutrition and Fertilizer Science, 2002, 8(4): 435-440. (in Chinese)

[13]梁玉英, 黄益宗, 孟凡乔, 朱永官. 有机酸对菜地土壤磷素活化的影响. 生态学报, 2005, 25(5) : 1171-1177.

Liang Y Y, Huang Y Z, Meng F Q, Zhu Y G. Effect of organic acids on the activation of phosphorus in vegetable garden soils. Acta Ecology Sinica, 2005, 25(5) : 1171-1177. (in Chinese)

[14]李志洪, 陈  丹, 孙晓秋, 窦  森, 崔  莉. 缺磷对不同基因型玉米根系分泌有机酸以及活化难溶性磷的影响(简报). 植物生理学通讯, 1999, 35(6): 455-457.

Li Z H, Chen D, Sun X Q, Dou S, Cui L. Effects of phosphorus deficiency on excretion of organic acids for different maize genotypes and mobilization of undissolved phosphorus. Plant Physiology Communications, 1999, 35(6): 455-457. (in Chinese)

[15]沈  宏, 施卫明, 王校常, 曹志洪. 不同作物对低磷胁迫的适应机理研究. 植物营养与肥料学报, 2001, 7(2): 172-177.

Shen H, Shi W M, Wang X C, Cao Z H. Study on adaption mechanisms of different crops to low phosphorus stress. Plant Nutrition and Fertilizer Science, 2001, 7(2): 172-177. (in Chinese)

[16]孙克君, 赵  冰, 卢其明, 廖宗文. 活化磷肥的磷素释放特性、肥效及活化机理研究. 中国农业科学, 2007, 40(8): 1722-1729.

Sun K J, Zhao B, Lu Q M, Liao Z W. Study on release characteristics, fertilizer effect and activated mechanism of activated phosphoric fertilizers. Scientia Agricultura Sinica, 2007, 40(8): 1722-1729. (in Chinese)

[17]陈  坚, 张  辉, 朱炳耀, 林新坚. 紫云英SSR分子标记的开发及在品种鉴别中的应用. 作物学报, 2011, 37(8): 1-5.

Chen J, Zhang H, Zhu B Y, Lin X J. Development of microsatellite makers for Astragalus sinicus L. and its application for variety identification. Acta Agronomica Sinica, 2011, 37(8): 1-5. (in Chinese)

[18] 李永夫, 罗安程, 魏兴华, 姚旭国. 水稻利用难溶性磷酸盐的基因型差异及其与根系分泌物活化特性的关系. 中国水稻科学, 2006, 20(5): 493-498.

Li Y F, Luo A C, Wei X H, Yao X G. Genotypic variation of rice in utilization of sparingly soluble phosphate and its relationship with mobilization characteristic of root exudation. Chinese Journal of Rice Science, 2006, 20(5): 493-498. (in Chinese)

[19]Itoh S, Bauber S A. Potassium uptake by six plant species as related to root hairs. Agronomy Journal, 1983, 75: 457-461.

[20]刘国栋, 李振声, 李继云. 小麦不同磷效率基因型的子母盆栽试验. 作物学报, 1998, 24(1): 78-83.

Liu G D, Li Z S, Li J Y. A root system split spot experiment with various wheat genotypes for studying their differential utilization of phosphate in liquid and solid phases. Acta Agronomica Sinica, 1998, 24(1): 78-83. (in Chinese)

[21]徐  茂, 曹翠玉, 史瑞和. 不同作物对磷的吸收与根系的生理形态特征的关系. 南京农业大学学报, 1991, 14(4): 65-70.

Xu M, Cao C Y, Shi R H. Phosphorus uptake by various crops as related to root morphological and physiological characteristics. Journal of Nanjing Agricultural University, 1991, 14(4): 65-70. (in Chinese)

[22]刘  灵, 廖  红, 王秀荣, 严小龙. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系. 中国农业科学, 2008, 41(4): 1089-1099.

Liu L, Liao H, Wang X R, Yan X L. Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency. Scientia Agricultura Sinica, 2008, 41(4): 1089-1099. (in Chinese)

[23]周建朝, 王孝纯, 邓艳红, 林晓坤, 王  艳. 磷胁迫对不同基因型甜菜根系形态及根分泌物的影响. 中国农学通报, 2011, 27(2): 157-161.

Zhou J C, Wang X C, Deng Y H, Lin X K, Wang Y. Effects of phosphorus stress on the root morphology and root exudates in different sugar beet genotypes. Chinese Agricultural Science Bulletin, 2011, 27(2): 157-161. (in Chinese)

[24]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 2001, 237(2): 173-195.

[25]申建波, 张福锁, 毛达如. 磷胁迫下大豆根分泌有机酸的动态变化. 中国农业大学学报, 1998, 3(增刊): 44-48.

Shen J B, Zhang F S, Mao D R. Dynamics of low-molecular-weight organic acids in root exudates of soybean under P-deficiency. Journal of China Agricultural University, 1998, 3(Suppl.): 44-48. (in Chinese)

[26]严小龙, 廖  红, 年 海. 根系生物学原理与应用. 北京: 科学出版社, 2007: 115-142.

Yan X L, Liao H, Nian H. Root Biological Principle and Application. Beijing: Science Press, 2007: 115-142. (in Chinese)

[27]田中民, 秦芳玲, 王  波. 缺磷白羽扇豆根系分泌物收集方法的比较研究. 西北农林科技大学学报: 自然科学版, 2003, 31(4): 154-158.

Tian Z M, Qin F L, Wang B. Comparative studies on methods of collecting root exudates from phosphorus deficient white lupin. Journal of Northwest Scientific-Technology University of Agriculture and Forestry: Nature Science Edition, 2003, 31(4): 154-158. (in Chinese)

[28]Dinke L B, Romheld V, Marschner H.Citric acid excretion and precipitation of calcium citrate in rhizosphere of white lupin (Lupinus albus L.). Plant, Cell and Environment, 1989, 12: 285-292.

[29]马  敬, 曹一平, 李春俭.现代农业中的植物营养与施肥. 北京: 中国农业科技出版社, 1995: 149-152.

Ma J, Cao Y P, Li C J. Plant Nutrition and Fertilization of Modern Agriculture. Beijing: China Agricultural Science and Technology Press, 1995: 149-152. (in Chinese)

[30]Ryan P R, Delhaize E, Jones D L.Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527-560.

[31]龚松贵, 王兴祥, 张桃林, 李清曼, 周  静. 低分子量有机酸对红壤无机磷活化的作用. 土壤学报, 2010, 47(4): 692-697.

Gong S G, Wang X X, Zhang T L, Li Q M, Zhou J. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids. Acta Pedological Sinica, 2010, 47(4): 692-697. (in Chinese)

[32]李  隆, 李晓林, 张福锁. 小麦-大豆间作中小麦对大豆磷吸收的促进作用. 生态学报, 2000, 20(4): 629-633.

Li L, Li X L, Zhang F S. Facilitation of wheat to phosphorus uptake by soybean in the wheat-soybean intercropping. Acta Ecological Sinica, 2000, 20(4): 629-633. (in Chinese)

[33]李健梅, 曹一平. 磷胁迫条件下油菜、肥田萝卜对难溶性磷的活化与利用. 植物营养与肥料学报, 1995, 1(3): 36-41.

Li J M, Cao Y P. Mobilization and utilization of sparingly soluble P by rape and radish under P-deficiency. Plant Nutrition and Fertilizer Science, 1995, 1(3): 36-41. (in Chinese)

[34]Kochian L V, Hoekenga O A, Pineros M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annual Review of Plant Biology, 2004, 55: 459-493.

[35]陆文龙, 曹一平, 张福锁. 根分泌的有机酸对土壤磷和微量元素的活化作用. 应用生态学报, 1999, l0(3): 379-382.

Lu W L, Cao Y P, Zhang F S. Role of root-exuded organic acids in mobilization of soil phosphorus and micronutrients. Chinese Journal of Applied Ecology, 1999, 10(3): 379-382. (in Chinese)

[36]胡红青, 李学垣, 贺纪正. 有机酸对铝氧化物吸附磷的影响. 植物营养与肥料学报, 2000, 6(1): 35-41.

Hu H Q, Li X Y, He J Z. Effects of organic acids on phosphate adsorption by synthetic Al oxides. Plant Nutrition and Fertilizer Science, 2000, 6(1): 35-41.(in Chinese)

[37]王艳玲, 何园球, 李成亮. 柠檬酸对红壤磷的持续活化效应及其活化机理的探讨. 土壤学报, 2007, 44(1) : 130-136.

Wang Y L, He Y Q, Li C L. Persistent activating effect of citric acid on phosphorus in red soil and its mechanism. Acta Pedologica Sinica, 2007, 44(1): 130-136. (in Chinese)

[38]施卫明. 根系分泌物与养分有效性. 土壤, 1993, 25: 252-256.

Shi W M. Root exudates and nutrient availability. Soils, 1993, 25: 252-256. (in Chinese)

[39]Zhang H W, Huang Y, Ye X S, Xu F S. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus condition. Science China Life Sciences, 2010, 53: 418-427.
[1] ZHANG YingQiang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang,YUAN Liang. Conversion Characteristics of Different Carboxyl-Containing Organic Acids Modified Urea in Calcareous Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2022, 55(17): 3355-3364.
[2] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[3] Shan ZHUANG,Wei LIN,JunJun DING,Qian ZHENG,XinYue KOU,QiaoZhen LI,YuZhong LI. Effects of Different Root Exudates on Soil N2O Emissions and Isotopic Signature [J]. Scientia Agricultura Sinica, 2020, 53(9): 1860-1873.
[4] TIAN Qing,GAO DanMei,LI Hui,LIU ShouWei,ZHOU XinGang,WU FengZhi. Effects of Wheat Root Exudates on the Structure of Fungi Community in Continuous Cropping Watermelon Soil [J]. Scientia Agricultura Sinica, 2020, 53(5): 1018-1028.
[5] DUAN YingCe,HU ZiYi,YANG Fan,LI JinTao,WU XiangLi,ZHANG RuiYing. Effects of pH and Buffering on the Growth of Lentinula edodes Mycelium [J]. Scientia Agricultura Sinica, 2020, 53(22): 4683-4690.
[6] ZHAO XuSheng,QI YongZhi,YAN CuiMei,ZHEN WenChao. Allelopathy of Six Organic Acids on Wheat Sheath Blight in the Soil of Winter Wheat-Summer Maize Double Cropping Straw Returning System [J]. Scientia Agricultura Sinica, 2020, 53(15): 3095-3107.
[7] ZHAO DeQiang,LI Tong,HOU YuTing,YUAN JinChuan,LIAO YunCheng. Benefits and Marginal Effect of Dry Matter Accumulation and Yield in Maize and Soybean Intercropping Patterns [J]. Scientia Agricultura Sinica, 2020, 53(10): 1971-1985.
[8] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
[9] LIU ShiYao,RAN Hui,MAO YunZhi,CHEN XinYu. Identification of the Fruit Characteristic Organic Acids of Chaenomeles speciosa from Qijiang, Chongqing by GC-MS and Their Dynamic Change Researching During Its Fruit Developing Period [J]. Scientia Agricultura Sinica, 2019, 52(1): 111-128.
[10] WANG Xue-hua, DAI Li. Immobilization Effect and Its Physiology and Biochemical Mechanism of the Cadmium in Crop Roots [J]. Scientia Agricultura Sinica, 2016, 49(22): 4323-4341.
[11] ZHENG Hui-wen, ZHANG Qiu-yun, LI Wen-hui, ZHANG Shi-kui, XI Wan-peng. Changes in Soluble Sugars and Organic Acids of Xinjiang Apricot During Fruit Development and Ripening [J]. Scientia Agricultura Sinica, 2016, 49(20): 3981-3992.
[12] LIU Shuo, LIU You-chun, LIU Ning, ZHANG Yu-ping, ZHANG Qiu-ping, XU Ming, ZHANG Yu-jun, LIU Wei-sheng. Sugar and Organic Acid Components in Fruits of Plum Cultivar Resources of Genus Prunus [J]. Scientia Agricultura Sinica, 2016, 49(16): 3188-3198.
[13] WU Dan, DONG Jian, YAO Yan-jie, ZHAO Wan-chun, GAO Xiang. Spatiotemporal Expression Pattern Analysis of NAM Transcription Factors Gpc-1 and Gpc-2 in Bread Wheat Cultivar Chinese Spring During Grain Filling [J]. Scientia Agricultura Sinica, 2015, 48(7): 1262-1276.
[14] YU Hui-yong, SONG Xiao-li, WANG Shu-sheng, CAO Li-jun, GUO Li, WANG Xiao-li, PENG Gong-yin. Effects of Low Molecular Weight Organic Acids on Soil Enzymes Activities and Bacterial Community Structure [J]. Scientia Agricultura Sinica, 2015, 48(24): 4936-4947.
[15] LUO Yan, FAN Wei-Guo. Organic Acid Content, Microbial Quantity and Enzyme Activity in Rhizosphere Soil of Four Citrus Rootstocks Under Different Phosphorus Levels [J]. Scientia Agricultura Sinica, 2014, 47(5): 955-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!