Scientia Agricultura Sinica ›› 2026, Vol. 59 ›› Issue (3): 575-588.doi: 10.3864/j.issn.0578-1752.2026.03.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Straw Return on Distribution of Aggregates and Phosphorus Fractions in Shajiang Black Soil

LIU MengYang1(), LIU Jie1, CHEN Xiang2, WANG QingYun1, LUO LaiChao1, QI YongBo1, TIAN Da1, LI JinCai2, CHAI RuShan1()   

  1. 1 College of Resources and Environment, Anhui Agricultural University/Anhui Province Key Laboratory of Farmland Ecological Conservation and Nutrient Utilization/Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, Hefei 230036
    2 School of Agronomy, Anhui Agricultural University/East China Crop Cultivation Scientific Observation Station, Ministry of Agriculture and Rural Affairs, Hefei 230036
  • Received:2025-03-24 Accepted:2025-06-04 Online:2026-02-01 Published:2026-01-31
  • Contact: CHAI RuShan

Abstract:

【Objective】In order to provide the theoretical support for soil structure improvement and phosphorus activation of Shajiang black soil, the regulatory effects of wheat and maize straw return on aggregate size distribution and phosphorus fractions of soil aggregates were investigated. 【Method】This study was based on a long-term straw return experiment (since 2008) conducted in Mengcheng County, Anhui Province. The experimental design included four treatments: conventional fertilization (F), conventional fertilization plus wheat straw return (FWS), conventional fertilization plus maize straw return (FMS), and conventional fertilization plus wheat and maize straw return (FWMS). Soil samples of cultivated layers (0-20 cm) were collected at wheat maturity stage in 2023 to determine the composition of soil aggregates and the content of phosphorus fractions in different particle-size aggregates. The effects of wheat and maize straw return on the distribution of phosphorus fractions in soil aggregates, the phosphorus activation rates of different size aggregates and their contribution rates to soil available phosphorus were analyzed. 【Result】Compared with the F treatment, the proportions of >2 mm aggregates in Shajiang black soil under FWS, FMS and FWMS treatments were significantly increased by 35.9%, 30.6% and 39.1%, respectively, while the proportions of 0.25-2 mm aggregates and microaggregates (0.053-0.25 mm) were significantly decreased. Wheat and maize straw incorporation significantly increased the mean weight diameter (MWD) of water-stable aggregates and decreased the percentage of aggregate disruption (PAD). Under the condition of straw return, the contents of soil total phosphorus and available phosphorus were significantly increased by 6.5%-26.0% and 21.1%-37.6%, respectively. Wheat and maize straw return could significantly elevate the contents of labile phosphorus fraction NaHCO3-Pi (17.1%-51.3%) and moderate labile phosphorus fraction NaOH-Po (19.5%-46.2%) in Shajiang black soil. Compared with the F treatment, the soil available phosphorus contents and phosphorus activation rates of 0.25-2 mm aggregates under the straw return treatments were significantly increased by 39.3%-63.9% and 37.5%-51.7%, respectively. The relative contribution rates of >2 mm aggregates to soil available phosphorus under FWS, FMS and FWMS treatments were significantly increased by 19.0%, 17.3% and 22.3%, respectively, compared with the F treatment. However, straw incorporation significantly reduced the relative contribution rates of microaggregates (0.053-0.25 mm) and silt and clay particles (<0.053 mm) to soil available phosphorus. The contents of labile phosphorus (H2O-P, NaHCO3-Po) and moderate labile phosphorus (NaOH-Po) in 0.25-2 mm aggregates were increased under straw return. 【Conclusion】Wheat and maize straw return was an effective measure to improve the composition and stability of soil aggregates in Shajiang black soil, and could enhance the soil phosphorus supply capacity.

Key words: Shajiang black soil, straw return, aggregates, phosphorus fraction, phosphorus availability

Fig. 1

Composition of soil aggregates under different treatments F: Conventional fertilization, FWS: Conventional fertilization plus wheat straw return, FMS: Conventional fertilization plus maize straw return, FWMS: Conventional fertilization plus wheat and maize straw return. Different lowercase letters indicate significant differences among different straw return treatments at P<0.05. Error bars mean standard error. The same as below"

Table 1

Stability parameters of soil aggregates under different treatments"

处理
Treatment
干筛Dry sieving 湿筛Wet sieving 破坏率
PAD (%)
R0.25 (%) MWD (mm) R0.25 (%) MWD (mm)
F 96.7±0.5a 4.35±0.03b 84.5±0.7c 2.78±0.06b 12.7±0.4a
FWS 96.9±0.4a 4.77±0.01a 92.0±0.1a 3.70±0.07a 5.1±0.4c
FMS 96.9±0.5a 4.64±0.11a 87.5±0.3b 3.63±0.08a 9.7±0.7b
FWMS 96.0±0.2a 4.41±0.01b 93.1±0.4a 3.89±0.13a 3.0±0.2d

Table 2

Soil physicochemical properties under different treatments"

处理
Treatment
pH 有机质
SOM (g·kg-1)
全氮
TN (g·kg-1)
全磷
TP (g·kg-1)
有效磷
AP (mg·kg-1)
磷活化系数
PAC (%)
F 5.09±0.03a 32.3±1.1c 1.22±0.02b 0.54±0.01d 38.0±0.8c 7.1±0.2c
FWS 5.11±0.05a 37.1±0.9b 1.39±0.02a 0.61±0.01b 46.1±0.8b 7.6±0.2bc
FMS 5.06±0.04a 34.6±1.0bc 1.38±0.02a 0.57±0.01c 49.7±1.5ab 8.6±0.2a
FWMS 5.03±0.04a 41.2±0.8a 1.39±0.04a 0.68±0.02a 52.3±1.6a 7.7±0.2bc

Table 3

Contents of soil phosphorus fractions under different treatments (mg·kg-1)"

处理 Treatment H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po D.HCl-Pi Residual-P
F 23.4±2.3b 40.3±0.7c 49.8±3.3b 73.6±2.2c 83.8±2.7c 122.3±1.2b 186.7±1.2a
FWS 27.4±2.8b 47.7±2.3b 48.1±1.1b 92.1±3.9b 112.6±2.7ab 124.7±3.9b 191.8±6.6a
FMS 22.1±2.7b 47.2±1.2b 51.1±5.3b 78.5±2.7c 100.2±7.2b 126.5±1.5ab 188.0±2.3a
FWMS 43.2±0.8a 60.9±3.4a 85.4±3.2a 108.1±1.2a 122.6±2.9a 134.8±4.3a 192.9±4.4a

Fig. 2

Contents of total phosphorus and available phosphorus of soil aggregates under different treatments Different capital letters indicate significant differences among different size aggregates at P<0.05. The same as below"

Fig. 3

Relative contribution rates of soil aggregates to available phosphorus under different treatments"

Fig. 4

Phosphorus activation rates of soil aggregates under different treatments"

Table 4

Contents of phosphorus fractions of soil aggregates under different treatments (mg·kg-1)"

团聚体粒级
Aggregate size
处理
Treatment
H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po D.HCl-Pi Residual-P
>2 mm F 26.2±4.1b 59.4±5.3a 69.4±4.3b 82.7±2.9b 87.0±3.3b 66.8±4.6a 165.3±7.6a
FWS 27.6±2.7ab 70.2±3.5a 88.3±4.3a 100.3±4.8ab 102.7±3.8b 74.2±4.3a 162.7±3.8a
FMS 23.2±3.0b 63.2±3.4a 80.3±3.7ab 84.2±2.6b 103.2±5.8b 72.5±5.4a 162.0±1.3a
FWMS 38.0±3.5a 58.4±5.1a 81.0±2.7ab 109.4±9.9a 127.0±8.5a 63.9±4.1a 155.8±3.4a
0.25-2 mm F 21.0±2.7b 66.0±6.5a 45.9±3.4c 91.7±10.5a 83.3±10.8b 92.7±9.6b 173.3±2.0a
FWS 32.4±4.7a 64.2±3.4a 61.5±2.7bc 99.7±8.5a 130.5±9.5a 117.2±2.4a 149.2±3.2b
FMS 29.7±3.4ab 66.4±5.4a 77.1±5.2ab 100.1±4.2a 106.2±3.5ab 87.0±3.6b 158.8±2.5ab
FWMS 33.1±0.7a 77.5±4.1a 92.5±8.5a 101.8±5.9a 114.8±7.8a 97.5±3.5b 158.7±12.2ab
0.053-0.25 mm F 27.0±2.3a 52.9±2.8b 56.5±2.9b 113.5±0.8a 133.9±2.0ab 82.3±4.1b 140.8±1.7a
FWS 16.6±1.9b 54.5±1.6ab 53.1±1.6b 81.8±3.5b 145.5±6.8a 73.3±5.9b 145.0±2.6a
FMS 24.2±2.6ab 45.9±4.0b 66.0±0.5a 88.3±4.9b 123.3±1.9b 109.8±5.2a 136.3±9.5a
FWMS 31.2±3.4a 62.1±0.5a 57.9±2.0b 118.1±3.6a 136.4±1.2a 86.8±5.8b 153.0±5.5a
<0.053 mm F 6.2±1.7b 37.1±3.2b 71.5±2.7a 118.9±1.9a 98.0±4.6c 126.3±5.5ab 130.0±5.5a
FWS 8.0±0.7ab 40.4±2.1b 55.5±1.6b 57.9±4.3d 137.3±1.2a 114.9±5.7b 123.8±8.7a
FMS 13.4±2.1a 58.9±4.8a 53.3±2.2b 71.9±2.2c 110.2±4.6bc 134.2±4.8a 137.3±6.3a
FWMS 12.7±1.5a 67.5±4.1a 52.7±4.8b 93.0±3.5b 116.3±4.7b 130.7±4.4ab 123.2±4.0a

Table 5

Correlation between phosphorus fractions and available phosphorus"

磷组分 Phosphorus fraction H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po D.HCl-Pi 有效磷 AP
H2O-P 0.52**
NaHCO3-Pi 0.60** 0.64**
NaHCO3-Po 0.67** 0.54** 0.66**
NaOH-Pi 0.84** 0.65** 0.69** 0.58**
NaOH-Po 0.49* 0.71** 0.44* 0.66** 0.44*
D.HCl-Pi 0.50* 0.32 0.28 0.40 0.40 0.19
Residual-P 0.08 0.38 0.28 0.23 0.39 -0.21 0.24

Table 6

Path analysis of phosphorus fractions and available phosphorus"

磷组分
Phosphorus fraction
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient
H2O-P NaHCO3-Pi NaHCO3-Po NaOH-Pi NaOH-Po D.HCl-Pi Residual-P
H2O-P 0.12 0.07 0.08 0.10 0.06 0.06 0.01
NaHCO3-Pi 0.47 0.28 0.25 0.30 0.33 0.15 0.18
NaHCO3-Po 0.44 0.30 0.24 0.30 0.19 0.12 0.12
NaOH-Pi 0.18 0.15 0.12 0.12 0.12 0.07 0.04
NaOH-Po -0.08 -0.04 -0.06 -0.04 -0.05 -0.03 -0.03
D.HCl-Pi -0.08 -0.04 -0.03 -0.02 -0.03 -0.03 0.02
Residual-P -0.08 -0.01 -0.03 -0.02 -0.02 -0.03 0.02
[1]
LUO L C, WEI P, PENG S Y, WANG X X, CHAI R S, ZHANG C C, KADAMBOT S H M, PALTA J A. Rational phosphorus stewardship for sustainable maize production in China: A meta-analysis. European Journal of Agronomy, 2024, 153: 127072.

doi: 10.1016/j.eja.2023.127072
[2]
SHEN J B, YUAN L X, ZHANG J L, LI H G, BAI Z H, CHEN X P, ZHANG W F, ZHANG F S. Phosphorus dynamics: from soil to plant. Plant Physiology, 2011, 156(3): 997-1005.

doi: 10.1104/pp.111.175232 pmid: 21571668
[3]
LI G H, HUANG G Q, LI H G, VAN ITTERSUM M K, LEFFELAAR P A, ZHANG F S. Identifying potential strategies in the key sectors of China’s food chain to implement sustainable phosphorus management: A review. Nutrient Cycling in Agroecosystems, 2016, 104(3): 341-359.

doi: 10.1007/s10705-015-9736-z
[4]
MA J, LIU Y, HE W, HE P, HAYGARTH P M, SURRIDGE B W J, LEI Q, ZHOU W. The long-term soil phosphorus balance across Chinese arable land. Soil Use and Management, 2018, 34(3): 306-315.

doi: 10.1111/sum.2018.34.issue-3
[5]
PAN Z Q, ZHANG Y F, MA L D, ZHOU J, WANG Y C, WU K B, ZHANG Q, CHEN D J. Spatiotemporal variations of cropland phosphorus runoff loss in China. Journal of Hydrology, 2025, 648: 132419.

doi: 10.1016/j.jhydrol.2024.132419
[6]
ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 2018, 612: 522-537.

doi: 10.1016/j.scitotenv.2017.08.095
[7]
ISLAM M U, GUO Z C, JIANG F H, PENG X H. Does straw return increase crop yield in the wheat-maize cropping system in China: A meta-analysis. Field Crops Research, 2022, 279: 108447.

doi: 10.1016/j.fcr.2022.108447
[8]
LIANG F, LI B Z, VOGT R D, MULDER J, SONG H, CHEN J S, GUO J H. Straw return exacerbates soil acidification in major Chinese croplands. Resources, Conservation and Recycling, 2023, 198: 107176.

doi: 10.1016/j.resconrec.2023.107176
[9]
LIU J, FANG L C, QIU T Y, CHEN J, WANG H, LIU M X, YI J, ZHANG H L, WANG C, SARDANS J, CHEN L, HUANG M, PENUELAS J. Crop residue return achieves environmental mitigation and enhances grain yield: A global meta-analysis. Agronomy for Sustainable Development, 2023, 43(6): 78.

doi: 10.1007/s13593-023-00928-2
[10]
侯素素, 董心怡, 戴志刚, 巩细民, 徐志宇, 薛颖昊, 张洋洋, 李小坤, 丛日环, 鲁剑巍. 基于田间试验的秸秆还田化肥替减潜力综合分析. 农业工程学报, 2023, 39(5): 70-78.
HOU S S, DONG X Y, DAI Z G, GONG X M, XU Z Y, XUE Y H, ZHANG Y Y, LI X K, CONG R H, LU J W. Comprehensive analysis of chemical fertilizer replacement potential by straw returning in field experiments. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5): 70-78. (in Chinese)
[11]
WANG J X, QI Z M, WANG C. Phosphorus loss management and crop yields: A global meta-analysis. Agriculture, Ecosystems & Environment, 2023, 357: 108683.

doi: 10.1016/j.agee.2023.108683
[12]
安徽省统计局,国家统计局安徽调查总队. 安徽统计年鉴2024. 北京: 中国统计出版社, 2024.
Anhui Provincial Bureau of Statistics, Survey Office of the National Bureau of Statistics in Anhui. Anhui Statistical Yearbook 2024. Beijing: China Statistics Press, 2024. (in Chinese)
[13]
柴如山, 徐悦, 程启鹏, 王擎运, 马超, 叶新新, 章力干, 郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力. 中国农业科学, 2021, 54(1): 95-109. doi: 10.3864/j.issn.0578-1752.2021.01.008.
CHAI R S, XU Y, CHENG Q P, WANG Q Y, MA C, YE X X, ZHANG L G, GAO H J. Nutrient resource quantity of main crop straw and utilization potential under straw returning in Anhui Province. Scientia Agricultura Sinica, 2021, 54(1): 95-109. doi: 10.3864/j.issn.0578-1752.2021.01.008. (in Chinese)
[14]
王擎运, 陈景, 杨远照, 柴如山, 叶新新, 郜红建, 马东豪, 张佳宝, 周云鹏. 长期秸秆还田对典型砂姜黑土胀缩特性的影响机制. 农业工程学报, 2019, 35(14): 119-124.
WANG Q Y, CHEN J, YANG Y Z, CHAI R S, YE X X, GAO H J, MA D H, ZHANG J B, ZHOU Y P. Effect mechanism of long-term straw returning on shrinkage characteristic in typical Shajiang black soil. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14): 119-124. (in Chinese)
[15]
韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[16]
徐悦, 陈翔, 王擎运, 罗来超, 张朝春, 李金才, 叶新新, 郜红建, 柴如山. 小麦玉米秸秆长期还田对砂姜黑土磷库组成的影响. 农业环境科学学报, 2022, 41(8): 1768-1777.
XU Y, CHEN X, WANG Q Y, LUO L C, ZHANG C C, LI J C, YE X X, GAO H J, CHAI R S. Effects of long-term wheat and maize straw incorporation on phosphorus fractions in lime concretion black soil. Journal of Agro-Environment Science, 2022, 41(8): 1768-1777. (in Chinese)
[17]
王威, 唐蛟, 殷金忠, 潘飞飞, 樊姝言, 黄文文, 吴大付. 秸秆全量还田配施沼液对砂姜黑土水稳性团聚体及结合有机碳的影响. 土壤, 2023, 55(1): 53-61.
WANG W, TANG J, YIN J Z, PAN F F, FAN S Y, HUANG W W, WU D F. Aggregates and associated organic carbon in lime concretion black soil in response to combined full-rate straw incorporation and biogas slurry application. Soils, 2023, 55(1): 53-61. (in Chinese)
[18]
何家帅, 李新美, 魏跃鹏, 郭航兆, 杨康娜, 孙磊康, 李孝永, 贾绪存, 李玉霞, 李荣发, 王群. 长期深耕秸秆还田配施生物炭对砂姜黑土团聚体及小麦-玉米产量的影响. 农业工程学报, 2024, 40(7): 161-171.
HE J S, LI X M, WEI Y P, GUO H Z, YANG K N, SUN L K, LI X Y, JIA X C, LI Y X, LI R F, WANG Q. Effects of long-term deep tillage and straw return with biochar addition to lime concretion black soil on the aggregates and wheat-maize yield. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(7): 161-171. (in Chinese)
[19]
李新悦, 李冰, 莫太相, 王昌全, 万艺媛, 陈写畅, 李和明. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响. 应用生态学报, 2021, 32(9): 3257-3266.

doi: 10.13287/j.1001-9332.202109.022
LI X Y, LI B, MO T X, WANG C Q, WAN Y Y, CHEN X C, LI H M. Effects of long-term straw returning on distribution of aggregates and nitrogen, phosphorus, and potassium in paddy. Chinese Journal of Applied Ecology, 2021, 32(9): 3257-3266. (in Chinese)
[20]
柳开楼, 都江雪, 邬磊, 张文菊, 韩天富, 李文军, 施林林, 余喜初. 长期施肥对不同深度稻田土壤团聚体磷素分配的影响. 农业资源与环境学报, 2022, 39(6): 1115-1123.
LIU K L, DU J X, WU L, ZHANG W J, HAN T F, LI W J, SHI L L, YU X C. Effects of long-term fertilization on phosphorus distribution in soil aggregates of different depths in paddy fields. Journal of Agricultural Resources and Environment, 2022, 39(6): 1115-1123. (in Chinese)
[21]
赵庆雷, 信彩云, 王瑜, 王佳, 刘奇华, 李景岭, 马加清. 稻麦轮作区连续秸秆还田和施肥条件下砂姜黑土无机磷分布特征. 草业学报, 2018, 27(12): 58-68.

doi: 10.11686/cyxb2018280
ZHAO Q L, XIN C Y, WANG Y, WANG J, LIU Q H, LI J L, MA J Q. Characteristics of inorganic phosphorus in lime concretion black soil under continuous straw-return and fertilization in a rice-wheat rotation area. Acta Prataculturae Sinica, 2018, 27(12): 58-68. (in Chinese)
[22]
HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976.

doi: 10.2136/sssaj1982.03615995004600050017x
[23]
WANG Q, QIN Z H, ZHANG W W, CHEN Y H, ZHU P, PENG C, WANG L, ZHANG S X, COLINET G. Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties. Journal of Integrative Agriculture, 2022, 21(9): 2720-2733.

doi: 10.1016/j.jia.2022.07.018
[24]
LIAO D, ZHANG C C, LAMBERS H, ZHANG F S. Changes in soil phosphorus fractions in response to long-term phosphate fertilization under sole cropping and intercropping of maize and faba bean on a calcareous soil. Plant and Soil, 2021, 463(1): 589-600.

doi: 10.1007/s11104-021-04915-y
[25]
秦贞涵, 王琼, 张乃于, 金玉文, 张淑香. 黑土有效磷阈值区间的磷形态特征及对土壤化学性质的响应. 中国农业科学, 2022, 55(22): 4419-4432. doi: 10.3864/j.issn.0578-1752.2022.22.008.
QINZH,WANGQ,ZHANGNY,JIN Y W, ZHANG S X. Characteristics of phosphorus fractions and its response to soil chemical properties under the threshold region of Olsen P in black soil. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432. doi: 10.3864/j.issn.0578-1752.2022.22.008. (in Chinese)
[26]
刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643.
LIU Y L, WANG P, WANG J K. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedologica Sinica, 2023, 60(3): 627-643. (in Chinese)
[27]
孔亚丽, 秦华, 朱春权, 田文昊, 朱晓芳, 虞轶俊, 张均华. 土壤微生物影响土壤健康的作用机制研究进展. 土壤学报, 2024, 61(2): 331-347.
KONG Y L, QIN H, ZHU C Q, TIAN W H, ZHU X F, YU Y J, ZHANG J H. Research progress on the mechanism by which soil microorganisms affect soil health. Acta Pedologica Sinica, 2024, 61(2): 331-347. (in Chinese)
[28]
翟龙波, 章熙锋, 陈靖, 况福虹, 唐家良. 施肥对坡地土壤团聚体与磷素赋存形态的影响. 西南大学学报(自然科学版), 2019, 41(7): 105-115.
ZHAI L B, ZHANG X F, CHEN J, KUANG F H, TANG J L. Effects of fertilization on soil aggregates and phosphorus fractions of sloping upland of purple soil. Journal of Southwest University (Natural Science Edition), 2019, 41(7): 105-115. (in Chinese)
[29]
谭文峰, 许运, 史志华, 蔡鹏, 黄巧云. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 2023, 60(5): 1297-1308.
TAN W F, XU Y, SHI Z H, CAI P, HUANG Q Y. The formation process and stabilization mechanism of soil aggregates driven by binding materials. Acta Pedologica Sinica, 2023, 60(5): 1297-1308. (in Chinese)
[30]
窦森, 李凯, 关松. 土壤团聚体中有机质研究进展. 土壤学报, 2011, 48(2): 412-418.
DOU S, LI K, GUAN S. A review on organic matter in soil aggregates. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese)
[31]
SIX J, BOSSUYT H, DEGRYZE S, DENEF K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79(1): 7-31.

doi: 10.1016/j.still.2004.03.008
[32]
MAARASTAWI S A, FRINDTE K, BODELIER P L E, KNIEF C. Rice straw serves as additional carbon source for rhizosphere microorganisms and reduces root exudate consumption. Soil Biology and Biochemistry, 2019, 135: 235-238.

doi: 10.1016/j.soilbio.2019.05.007
[33]
刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273, 298.
LIU J Y, ZHOU Z C, SU X M. Review of the mechanism of root system on the formation of soil aggregates. Journal of Soil and Water Conservation, 2020, 34(3): 267-273, 298. (in Chinese)
[34]
CZARNES S, HALLETT P D, BENGOUGH A G, YOUNG I M. Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 2000, 51(3): 435-443.

doi: 10.1046/j.1365-2389.2000.00327.x
[35]
苑亚茹, 韩晓增, 李禄军, 丁雪丽. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响. 水土保持学报, 2011, 25(6): 96-99.
YUAN Y R, HAN X Z, LI L J, DING X L. Effects of soluble root exudates on microbial activity and aggregate stability of black soils. Journal of Soil and Water Conservation, 2011, 25(6): 96-99. (in Chinese)
[36]
吴宇, 蔡洪梅, 许波, 于敏, 王捧娜, 代雯慈, 张梦祥, 任驿, 武文明, 李金才, 陈翔. 不同季秸秆全量还田对小麦根系分泌物的影响. 中国生态农业学报(中英文), 2022, 30(12): 1938-1948.
WU Y, CAI H M, XU B, YU M, WANG P N, DAI W C, ZHANG M X, REN Y, WU W M, LI J C, CHEN X. Effects of all straw return on root secretions of wheat in different seasons. Chinese Journal of Eco-Agriculture, 2022, 30(12): 1938-1948. (in Chinese)
[37]
陈翔, 许波, 吴宇, 许辉, 蔡洪梅, 孙东岳, 于敏, 刘绿洲, 郑宝强, 李金才. 不同季秸秆全量还田对夏玉米根系分泌物的影响. 中国生态农业学报(中英文), 2023, 31(9): 1403-1415.
CHEN X, XU B, WU Y, XU H, CAI H M, SUN D Y, YU M, LIU L Z, ZHENG B Q, LI J C. Effects of returns of full straws of different seasons on summer maize root exudates. Chinese Journal of Eco-Agriculture, 2023, 31(9): 1403-1415. (in Chinese)
[38]
柴如山, 程启鹏, 陈翔, 罗来超, 马超, 张亮亮, 章力干, 李金才, 郜红建. 安徽省县域麦稻玉米秸秆时空分异特征与还田养分输入量测算. 农业工程学报, 2021, 37(20): 234-247.
CHAI R S, CHENG Q P, CHEN X, LUO L C, MA C, ZHANG L L, ZHANG L G, LI J C, GAO H J. Spatio-temporal variations of wheat, rice and maize straw in major grain-producing counties of Anhui Province and utilization potential of straw nutrient returning to field. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 234-247. (in Chinese)
[39]
DAMON P M, BOWDEN B, ROSE T, RENGEL Z. Crop residue contributions to phosphorus pools in agricultural soils: A review. Soil Biology and Biochemistry, 2014, 74: 127-137.

doi: 10.1016/j.soilbio.2014.03.003
[40]
LIU X, ZHANG Y L, WANG Z, CHEN Z H. The contribution of organic and chemical fertilizers on the pools and availability of phosphorus in agricultural soils based on a meta-analysis. European Journal of Agronomy, 2024, 156: 127144.

doi: 10.1016/j.eja.2024.127144
[41]
贾瑞峰, 丛日环, 徐志宇, 孙元丰, 李晓阳, 戴志刚, 李小坤, 任涛, 鲁剑巍. 秸秆还田技术改善土壤理化性质提高作物产量的Meta分析. 农业工程学报, 2025, 41(4): 80-89.
JIA R F, CONG R H, XU Z Y, SUN Y F, LI X Y, DAI Z G, LI X K, REN T, LU J W. Meta analysis of straw returning technology to improve soil physicochemical properties and increase the yield of main cereal and oil crop. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(4): 80-89. (in Chinese)
[42]
向晓玲, 陈松鹤, 杨洪坤, 贺鹏, 樊高琼. 秸秆覆盖与施磷对四川丘陵旱地土壤磷形态及有效性的影响. 应用生态学报, 2022, 33(12): 3337-3344.

doi: 10.13287/j.1001-9332.202212.015
XIANG X L, CHEN S H, YANG H K, HE P, FAN G Q. Effects of straw mulching and phosphorus application on forms and availability of soil phosphorus in hilly dryland of Sichuan, China. Chinese Journal of Applied Ecology, 2022, 33(12): 3337-3344. (in Chinese)
[43]
马莹, 程莹莹, 石孝均, 陈新平, 骆永明. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用. 微生物学报, 2023, 63(12): 4502-4521.
MA Y, CHENG Y Y, SHI X J, CHEN X P, LUO Y M. Phosphate- solubilizing bacteria: Roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers. Acta Microbiologica Sinica, 2023, 63(12): 4502-4521. (in Chinese)
[44]
马垒, 郭志彬, 王道中, 赵炳梓. 长期三水平磷肥施用梯度对砂姜黑土细菌群落结构和酶活性的影响. 土壤学报, 2019, 56(6): 1459-1470.
MA L, GUO Z B, WANG D Z, ZHAO B Z. Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black soil relative to P application rate. Acta Pedologica Sinica, 2019, 56(6): 1459-1470. (in Chinese)
[45]
李千雪, 李春越, 张文婷, 窦祥祥, 薛英龙, 寇钊阳, 王益, 党廷辉. 秸秆覆盖还田保护性耕作对黄土旱塬土壤磷素组分的影响. 农业环境科学学报, 2024, 43(2): 368-377.
LI Q X, LI C Y, ZHANG W T, DOU X X, XUE Y L, KOU Z Y, WANG Y, DANG T H. Effects of conservation tillage with straw mulching on soil phosphorus components in the Loess Plateau. Journal of Agro-Environment Science, 2024, 43(2): 368-377. (in Chinese)
[46]
申文艳, 张乃于, 李天娇, 宋天昊, 张秀芝, 彭畅, 刘红芳, 张淑香, 段碧华. 长期施肥黑土phoD微生物群落特征及其对有机磷组分的影响. 中国农业科学, 2024, 57(20): 4082-4093. doi: 10.3864/j.issn.0578-1752.2024.20.013.
SHEN W Y, ZHANG N Y, LI T J, SONG T H, ZHANG X Z, PENG C, LIU H F, ZHANG S X, DUAN B H. Characteristics of phoD- harboring microbial communities under long-term fertilization and its effects on organic phosphorus fractions in black soil. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093. doi: 10.3864/j.issn.0578-1752.2024.20.013. (in Chinese)
[47]
张向前, 陈欢, 赵竹, 李玮, 杜世州, 乔玉强, 曹承富. 不同秸秆覆盖水平对砂姜黑土生物学性状的影响. 生态环境学报, 2015, 24(4): 610-616.

doi: 10.16258/j.cnki.1674-5906.2015.04.010
ZHANG X Q, CHEN H, ZHAO Z, LI W, DU S Z, QIAO Y Q, CAO C F. Effects of different straw mulching levels on biological characteristics of lime concretion black soil. Ecology and Environmental Sciences, 2015, 24(4): 610-616. (in Chinese)
[48]
魏丹, 杨华薇, 陈延华, 吕春玲, 毕睿忻, 张馨元, 马茂亭. 有机酸对土壤磷的活化利用研究进展. 农业环境科学学报, 2022, 41(7): 1391-1399.
WEI D, YANG H W, CHEN Y H, C L, BI R X, ZHANG X Y, MA M T. Research on the activation and regulation of soil phosphorus by organic acids. Journal of Agro-Environment Science, 2022, 41(7): 1391-1399. (in Chinese)
[49]
黄少辉, 杨慧敏, 杨军芳, 杨文方, 聂浩亮, 张静, 邢素丽, 王敬霞, 杨云马, 贾良良. 磷肥长期施用对石灰性褐土团聚体中磷形态及磷酸酶活性的影响. 中国农业科学, 2025, 58(5): 943-956. doi: 10.3864/j.issn.0578-1752.2025.05.010.
HUANG S H, YANG H M, YANG J F, YANG W F, NIE H L, ZHANG J, XING S L, WANG J X, YANG Y M, JIA L L. Effects of long-term chemical phosphorus application on phosphorus morphology and phosphatase activity of different aggregates sizes in calcareous brown soil. Scientia Agricultura Sinica, 2025, 58(5): 943-956. doi: 10.3864/j.issn.0578-1752.2025.05.010. (in Chinese)
[50]
郭斗斗, 黄绍敏, 张珂珂, 张水清, 宋晓, 王柏寒, 岳克. 有机无机外源磷素长期协同使用对潮土磷素有效性的影响. 植物营养与肥料学报, 2018, 24(6): 1651-1659.
GUO D D, HUANG S M, ZHANG K K, ZHANG S Q, SONG X, WANG B H, YUE K. Effects of long-term synergistic use of organic and inorganic exogenous P on phosphorus availability in fluvo-aquic soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1651-1659. (in Chinese)
[51]
张乃于, 闫双堆, 李娟, 王亚男, 刘越, 卜玉山. 低分子量有机酸对土壤磷组分影响的Meta分析. 植物营养与肥料学报, 2019, 25(12): 2076-2083.
ZHANG N Y, YAN S D, LI J, WANG Y N, LIU Y, BU Y S. Meta-analysis on the effects of low molecular weight organic acids on increasing availability of soil phosphorus. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2076-2083. (in Chinese)
[52]
段佳茹, 王淑颖, 李小红, 徐香茹, 梅秀文, 安婷婷, 汪景宽. 不同施肥条件下秸秆碳在表层和深层土壤团聚体中的分配与固存. 应用生态学报, 2022, 33(6): 1475-1481.

doi: 10.13287/j.1001-9332.202206.013
DUAN J R, WANG S Y, LI X H, XU X R, MEI X W, AN T T, WANG J K. Distribution and sequestration of straw carbon in surface and deep soil aggregates under different fertilization treatments. Chinese Journal of Applied Ecology, 2022, 33(6): 1475-1481. (in Chinese)
[53]
马悦, 田怡, 于杰, 王浩琳, 李永华, 李超, 党海燕, 牟文燕, 黄宁, 邱炜红, 石美, 王朝辉, 何刚. 北方麦区土壤有效磷阈值及小麦产量、籽粒氮磷钾含量对监控施肥的响应. 植物营养与肥料学报, 2021, 27(10): 1675-1691.
MA Y, TIAN Y, YU J, WANG H L, LI Y H, LI C, DANG H Y, MU W Y, HUANG N, QIU W H, SHI M, WANG Z H, HE G. Threshold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675-1691. (in Chinese)
[54]
刘淑军, 李冬初, 黄晶, 曲潇林, 马常宝, 王慧颖, 于子坤, 张璐, 韩天富, 柳开楼, 申哲, 张会民. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力. 中国农业科学, 2023, 56(16): 3140-3155. doi: 10.3864/j.issn.0578-1752.2023.16.008.
LIU S J, LI D C, HUANG J, QU X L, MA C B, WANG H Y, YU Z K, ZHANG L, HAN T F, LIU K L, SHEN Z, ZHANG H M. Spatial- temporal variation characteristics of wheat and maize stalk resources and chemical fertilizer reduction potential of returning to farmland in recent 30 years in China. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155. doi: 10.3864/j.issn.0578-1752.2023.16.008. (in Chinese)
[55]
丁天宇, 郭自春, 钱泳其, 王玥凯, 黄先金, 张中彬, 彭新华. 秸秆还田方式对砂姜黑土有机碳组分和孔隙结构的影响. 农业工程学报, 2023, 39(16): 71-78.
DING T Y, GUO Z C, QIAN Y Q, WANG Y K, HUANG X J, ZHANG Z B, PENG X H. Effects of straw return methods on the soil organic carbon fractions and pore structure characteristics of Shajiang black soil (Vertisol). Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 71-78. (in Chinese)
[1] ZHANG HaoXin, YU ShengYue, LEI QiuLiang, DU XinZhong, ZHANG Jizong, AN MiaoYing, FAN BingQian, LUO JiaFa, LIU HongBin. Simulating Soil Organic Carbon Dynamic Changes in Dryland and Paddy Field of Northeast China Using RothC Model [J]. Scientia Agricultura Sinica, 2025, 58(8): 1564-1578.
[2] JIN XiaoYing, XIAO BingZheng, ZHANG TianJin, LIU ZhongKuan, FENG Wei, DU ZhangLiu. Winter Green Manure Enhances Soil Aggregation and Plant- and Microbial-Derived Carbon Sequestration in Coastal Saline-Alkali Soils [J]. Scientia Agricultura Sinica, 2025, 58(20): 4203-4215.
[3] ZHANG HuanHuan, ZHANG DiaoLiang, WANG XiaoLi, CHEN Han, SHAO Juan, YIN Wen, HU FaLong, CHAI Qiang, FAN ZhiLong. Effects of Green Manure and Wheat Straw Combined Returning Application on Photosynthetic Characteristics and Yield of Spring Wheat Under Reduced Nitrogen Levels [J]. Scientia Agricultura Sinica, 2025, 58(17): 3461-3472.
[4] XIONG ZhiHao, LIU JunQuan, YE Lin, ZHU DanDan, HOU SuSu, FANG YaTing, CONG RiHuan, REN Tao, LI XiaoKun, LU JianWei. Characterization of Crop Yield and Nutrient Apparent Balance Between Direct and Burning Straw Return in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3293-3303.
[5] HUO RunXia, FANG YaTing, ZHANG YanKe, WU HaiYa, LIU GuiSheng, LI XiaoKun, REN Tao, LU ZhiFeng, CONG RiHuan, LU JianWei. Effects of Fertilizer Reduction on Crop Yield and Soil Fertility Under Long-Term Straw-Return Conditions in Rice-Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3267-3279.
[6] XUAN ZePeng, FENG HuiYao, CHEN MeiQi, XU JiSheng, LIU MengXuan, ZHAO BingZi, ZHANG JiaBao. Effects of Straw Returning Combined with Chemical Fertilizer on Soil Ecosystem Multifunctionality [J]. Scientia Agricultura Sinica, 2025, 58(14): 2821-2837.
[7] MA YuJie, LI Xu, ZHAI YingFang, LI JingYu, FU Xin, PENG ZhengPing. Effects of Straw Returning Methods and Nitrogen Application Rates on Soil Organic Carbon Components and Enzyme Activity [J]. Scientia Agricultura Sinica, 2025, 58(12): 2397-2410.
[8] LU Peng, FENG Jia, LI Li, YANG Li, YANG Lei, LÜ DeZhi, XUE YanFei. Phosphorus Fractions in Rhizosphere and Bulk Soil of Wheat and Their Availability Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2025, 58(12): 2382-2396.
[9] FENG Xiao, WEI JianFeng, FU LiXiao, WU ChaoSheng, YANG YuLing, TANG XiaoZhi. Effects of Alcalase Hydrolysis on the Structure, Aggregation Behavior and Gelling Properties of Quinoa Protein Isolate [J]. Scientia Agricultura Sinica, 2025, 58(1): 170-181.
[10] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[11] HAN XiaoJie, REN ZhiJie, LI ShuangJing, TIAN PeiPei, LU SuHao, MA Geng, WANG LiFang, MA DongYun, ZHAO YaNan, WANG ChenYang. Effects of Different Nitrogen Application Rates on Carbon and Nitrogen Content of Soil Aggregates and Wheat Yield [J]. Scientia Agricultura Sinica, 2024, 57(9): 1766-1778.
[12] SONG YaRong, CHANG DanNa, ZHOU GuoPeng, GAO SongJuan, DUAN TingYu, CAO WeiDong. Effect and Mechanism of Phosphate-Solubilizing Bacterial on Activating of Low-Grade Phosphate Rock Powder in Red Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(6): 1102-1116.
[13] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[14] SHEN WenYan, ZHANG NaiYu, LI TianJiao, SONG TianHao, ZHANG XiuZhi, PENG Chang, LIU HongFang, ZHANG ShuXiang, DUAN BiHua. Characteristics of phoD-Harboring Microbial Communities Under Long-Term Fertilization and Its Effects on Organic Phosphorus Fractions in Black Soil [J]. Scientia Agricultura Sinica, 2024, 57(20): 4082-4093.
[15] SUN Yue, REN KeYu, ZOU HongQin, GAO HongJun, ZHANG ShuiQing, LI DeJin, LI BingJie, LIAO ChuQian, DUAN YingHua, XU MingGang. Effect of Long-Term Straw Returning on the Soil Organic Carbon Bound to Iron Oxides in Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2024, 57(19): 3823-3834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!