Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (9): 1804-1815.doi: 10.3864/j.issn.0578-1752.2025.09.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Fairy Rings on Carbon and Water Fluxes in Hulunbuir Meadow Steppe

TUDI YIMITI1(), YU HongLiang2, WANG Xu2(), PING XiaoYan1(), WU YiQian2, WANG ChongWei2   

  1. 1 School of Grassland Science, Beijing Forestry University, Beijing 100083
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/National Field Scientific Observation and Research Station of Hulunbuir Grassland Ecosystem in Inner Mongolia, Beijing 100081
  • Received:2024-07-23 Accepted:2025-01-14 Online:2025-05-01 Published:2025-05-08
  • Contact: WANG Xu, PING XiaoYan

Abstract:

【Objective】 This study aimed to investigate the spatial heterogeneity of vegetation and soil in the grassland fairy ring and its influence on the ecosystem carbon and water exchange characteristics. 【Method】 Using a measurement system consisting of Licor-6400 and static bright/dark boxes, the different components of plant community carbon and water fluxes were determined, including net ecosystem carbon exchange (NEE), ecosystem respiration (ER), and evapotranspiration (ET), and estimated grassland ecosystem gross primary productivity (GPP), carbon utilization efficiency (CUE), and water utilization efficiency (WUE). 【Result】 Plants on the fairy ring (green grass ring) were mainly dominated by Gramineae, Cyperaceae and Asteraceae, and the number of species and diversity index on the ring were significantly smaller than those inside and outside the ring (P<0.05). The above-ground biomass on the ring (324.72 g·m-2) was significantly higher than those inside (184.66 g·m-2) and outside (194.86 g·m-2); while the below-ground biomass on the ring (340.55 g·m-2) was smaller than those inside (508.29 g·m-2) and outside (394.77 g·m-2), and the root shoot ratio of the ring was significantly lower than that outside of the ring (P<0.05), which might be related to the cumulative effect of soil available nutrient on the fairy ring. The average contents of soil total nitrogen (STN), soil organic carbon (SOC), soil available potassium (SAK), soil available phosphorus (SAP), soil ammonium nitrogen (SAN) and soil nitrate nitrogen (SNN) were higher than those in and out of the ring to different degrees. GPP and NEE were significantly greater on the grassland fairy ring than in and out of the ring (P<0.05), and ER, ET, CUE and WUE were higher on the ring than in and out of the ring too, but the differences were not significant (P>0.05). Carbohydrate flux components GPP, NEE, ER and ET were positively correlated with above-ground biomass to different degrees; CUE and WUE were positively correlated with soil nutrients to different degrees. 【Conclusion】 The developmental process of fairy ring fungi changed the structural characteristics of grassland communities and the spatial pattern of soil nutrients, and the soil “fertilization effect” driven by fairy ring fungi was the fundamental reason for the spatial heterogeneity of carbon and water flux fractions and carbon and water use efficiencies in different layers of the fairy ring.

Key words: grassland ecosystem, fairy ring, net ecosystem carbon exchange (NEE), gross primary productivity (GPP), carbon utilization efficiency (CUE), water use efficiency (WUE)

Fig. 1

Study area"

Fig. 2

Quadrat sample setting of fairy rings IN, ON, and OU stand for in, on, and out the fairy ring"

Fig. 3

Plurality of major plant species in the fairy ring community"

Fig. 4

Species diversity indices of plant communities across different areas of the fairy ring Different lowercase letters indicate significant difference among treatments (P<0.05)"

Fig. 5

Biomass and root shoot ratio across different areas of the fairy ring"

Table 1

Soil nutrient surrounding the fairy ring (Mean ± SEM)"

位置
Zone
土壤全氮
STN (g·kg-1)
土壤有机碳
SOC (g·kg-1)
土壤速效钾
SAK (mg·kg-1)
土壤速效磷
SAP (mg·kg-1)
土壤铵态氮
SAN (mg·kg-1)
土壤硝态氮
SNN (mg·kg-1)
圈内IN 3.77±0.11a 28.13±1.67a 146.28±9.37a 3.00±0.11b 19.71±2.38a 5.73±0.51a
圈上ON 3.92±0.13a 28.88±1.39a 169.55±10.51a 4.07±0.29a 24.03±3.30a 7.34±0.72a
圈外OU 3.74±0.15a 28.02±1.51a 162.96±13.73a 2.88±0.17b 16.80±1.96a 6.63±0.85a

Fig. 6

Variation of carbon and water fluxes components across different areas of the fairy ring"

Fig. 7

CUE and WUE across different areas of the fairy ring"

Fig. 8

Correlation analysis of the components of carbon and water fluxes in fairy rings with soil nutrients and plant biomass STN: Soil total nitrogen; SOC: Soil organic carbon; SAK: Soil available potassium; SAP: Soil available phosphorus; SAN: Soil ammonium nitrogen; SNN: Soil nitrate nitrogen; AGB: Above-ground biomass; BGB: Below-ground biomass; NEE: Net ecosystem carbon exchange; ER: Ecosystem respiration; ET: Evapotranspiration; GPP: Gross primary productivity; WUE: Water use efficiency; CUE: Carbon use efficiency. *P≤0.05, **P≤0.01, ***P≤0.001"

[1]
赵吉, 邵玉琴, 包青海. 草原蘑菇圈的土壤-植物系统研究. 生态学杂志, 2003, 22(5): 43-46.
ZHAO J, SHAO Y Q, BAO Q H. Soil-vegetation system surround the fairy ring in steppe. Chinese Journal of Ecology, 2003, 22(5): 43-46. (in Chinese)
[2]
LIU M H, WEI Y Q, LIAN L, WEI B, BI Y X, LIU N, YANG G W, ZHANG Y J. Macrofungi promote SOC decomposition and weaken sequestration by modulating soil microbial function in temperate steppe. Science of the Total Environment, 2023, 899: 165556.
[3]
曹铭, 王文颖, 徐进, 周华坤, 刘艳方, 德却拉姆, 杨玉青. 青海高寒草甸马勃蘑菇圈增温作用的影响研究. 草地学报, 2024, 32(3): 812-817.

doi: 10.11733/j.issn.1007-0435.2024.03.017
CAO M, WANG W Y, XU J, ZHOU H K, LIU Y F, DE Q, YANG Y Q. The study about thermal effect of Qinghai lycoperdales fungus fairy ring. Acta Agrestia Sinica, 2024, 32(3): 812-817. (in Chinese)
[4]
张灏, 杨超. 草地蘑菇圈对植被及土壤真菌的影响. 草业科学, 2019, 36(7): 1774-1780.
ZHANG H, YANG C. Effects of grassland fairy rings on vegetation and soil fungi. Pratacultural Science, 2019, 36(7): 1774-1780. (in Chinese)
[5]
邵玉琴, 赵吉. 草原蘑菇圈中土壤微生物类群数量的动态分布研究. 中国草地, 2000, 22(1): 47-50.
SHAO Y Q, ZHAO J. Study on dynamic distribution of soil microbial number of the fariy ring in steppe. Grassland of China, 2000, 22(1): 47-50. (in Chinese)
[6]
WANG M, SHI S, LIN F, HAO Z Q, JIANG P, DAI G H. Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLoS ONE, 2012, 7(2): e30754.
[7]
HAWKSWORTH D L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycological Research, 1991, 95(6): 641-655.
[8]
YANG C, ZHANG Y J, RONG Y P, BEI Y X, WEI Y Q, LIU N. Temporal variation of Q10 values in response to changes in soil physiochemical properties caused by fairy rings. European Journal of Soil Biology, 2018, 86: 42-48.
[9]
佟旭泽, 范凯凯, 闫玉春, 辛晓平, 王旭. 草原蘑菇圈生态学研究进展. 中国农业资源与区划, 2022, 43(3): 222-229.
TONG X Z, FAN K K, YAN Y C, XIN X P, WANG X. Advance in ecological research of fairy rings in grassland ecosystem. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 222-229. (in Chinese)
[10]
范凯凯, 佟旭泽, 闫玉春, 辛晓平, 王旭. 呼伦贝尔草原蘑菇圈对土壤呼吸作用的影响. 中国农业科学, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008.
FAN K K, TONG X Z, YAN Y C, XIN X P, WANG X. Effect of fairy rings on soil respiration in Hulunber meadow steppe. Scientia Agricultura Sinica, 2020, 53(13): 2595-2603. doi: 10.3864/j.issn.0578-1752.2020.13.008. (in Chinese)
[11]
陈立红, 阎伟, 刘建. 草原蘑菇圈对牧草长势影响的初步分析. 西北植物学报, 2002, 22(6): 141-145.
CHEN L H, YAN W, LIU J. Preliminary study of the effects of fairy ring of grassland on the growth of herbage. Acta Botanica Boreali- occidentalia Sinica, 2002, 22(6): 141-145. (in Chinese)
[12]
裴海昆, 刘育红. 高寒草甸“蘑菇圈” 对土壤营养成分的影响. 青海大学学报(自然科学版), 1998, 16(1): 28-29, 61.
PEI H K, LIU Y H. The effects of mushroom sphere on soil nutrients in alpine meadow. Journal of Qinghai University (Natural Science Edition), 1998, 16(1): 28-29, 61. (in Chinese)
[13]
刘振魁. 高寒草甸白蘑菇圈与圈外植物及土壤的比较. 草业科学, 1997, 14(3): 68-70.
LIU Z K. Comparison of plants and soil between white fairy circle and outside circle in alpine meadow. Pratacultural Science, 1997, 14(3): 68-70. (in Chinese)
[14]
王文颖, 王启基, 姜文波, 王刚, 马继雄. 黄蘑菇的生长对草地植被及土壤的影响. 草业学报, 2004, 13(4): 34-38.
WANG W Y, WANG Q J, JIANG W B, WANG G, MA J X. The growth of fairy rings of Armillaria luteo-virens and their effect upon grassland vegetation and soil. Acta Pratacultural Science, 2004, 13(4): 34-38. (in Chinese)
[15]
王启兰, 姜文波, 陈波. 黄绿蜜环菌蘑菇圈生长对土壤及植物群落的影响. 生态学杂志, 2005, 24(3): 269-272.
WANG Q L, JIANG W B, CHEN B. Effects of fairy ring growth of Armillaria luteo-virens on soil fertility and plant community. Chinese Journal of Ecology, 2005, 24(3): 269-272. (in Chinese)
[16]
刘珊珊, 刘元元, 余彬彬, 成凤凤, 田文辉, 祝建波, 王爱英. 新疆巴音布鲁克草原白蘑蘑菇圈土壤真菌多样性分析. 微生物学通报, 2019, 46(11): 2909-2918.
LIU S S, LIU Y Y, YU B B, CHENG F F, TIAN W H, ZHU J B, WANG A Y. Soil fungi diversity analysis of Tricholoma mongolicum mushroom ring in Bayinbuluke grassland, Xinjiang. Microbiology China, 2019, 46(11): 2909-2918. (in Chinese)
[17]
DUAN M Z, LU M L, LU J, YANG W J, LI B, MA L, WANG L Q. Soil chemical properties, metabolome, and metabarcoding give the new insights into the soil transforming process of fairy ring fungi Leucocalocybe mongolica. Journal of Fungi, 2022, 8(7): 680.
[18]
孙红, 方国飞, 阮琳琳, 李斯楠, 张丽. 亚洲半干旱区碳水通量时空格局及驱动因素. 生态学报, 2022, 42(12): 4742-4757.
SUN H, FANG G F, RUAN L L, LI S N, ZHANG L. Spatial-temporal pattern and driving factors of carbohydrate flux in semi-arid region of Asia. Acta Ecologica Sinica, 2022, 42(12): 4742-4757. (in Chinese)
[19]
刘福红, 叶许春, 郭强, 李相虎, 刘佳. 鄱阳湖流域不同土地覆被碳水利用效率时空变化及其与气候因子的相关性. 生态学报, 2021, 41(2): 694-706.
LIU F H, YE X C, GUO Q, LI X H, LIU J. Spatio-temporal variation of carbon and water use efficiency of different land cover in the Poyang Lake Basin and their correlations with climate factors. Acta Ecologica Sinica, 2021, 41(2): 694-706. (in Chinese)
[20]
宋春林, 孙向阳, 王根绪. 森林生态系统碳水关系及其影响因子研究进展. 应用生态学报, 2015, 26(9): 2891-2902.
SONG C L, SUN X Y, WANG G X. A review on carbon and water interactions of forest ecosystem and its impact factors. Chinese Journal of Applied Ecology, 2015, 26(9): 2891-2902. (in Chinese)
[21]
吴建平, 王思敏, 蔡慕天, 吴彬. 植物与微生物碳利用效率及影响因子研究进展. 生态学报, 2019, 39(20): 7771-7779.
WU J P, WANG S M, CAI M T, WU B. Review on carbon use efficiency of plants and microbes and its influencing factors. Acta Ecologica Sinica, 2019, 39(20): 7771-7779. (in Chinese)
[22]
张瀚曰, 包维楷, 胡斌, 胡慧. 植被类型变化对土壤微生物碳利用效率的影响研究进展. 生态学报, 2023, 43(16): 6878-6888.
ZHANG H Y, BAO W K, HU B, HU H. Effect of vegetation type change on soil microbial carbon use efficiency: A review. Acta Ecologica Sinica, 2023, 43(16): 6878-6888. (in Chinese)
[23]
李伏生, 康绍忠, 张富仓. CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响. 应用生态学报, 2003, 14(3): 387-393.
LI F S, KANG S Z, ZHANG F C. Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology, 2003, 14(3): 387-393. (in Chinese)
[24]
李炳垠, 卜崇峰, 李宜坪, 李新凯. 毛乌素沙地生物结皮覆盖土壤碳通量日动态特征及其影响因子. 水土保持研究, 2018, 25(4): 174-180.
LI B Y, BU C F, LI Y P, LI X K. Diurnal dynamic characteristics and influencing factors of the carbon flux in biocrusted soil in Mu Us sandland. Research of Soil and Water Conservation, 2018, 25(4): 174-180. (in Chinese)
[25]
柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子. 植物生态学报, 2018, 42(1): 6-19.

doi: 10.17521/cjpe.2017.0266
CHAI X, LI Y N, DUAN C, ZHANG T, ZONG N, SHI P L, HE Y T, ZHANG X Z. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2018, 42(1): 6-19. (in Chinese)

doi: 10.17521/cjpe.2017.0266
[26]
武倩, 鞠馨, 任海燕, 韩国栋. 降水调节荒漠草原生态系统碳交换对增温和氮添加的响应. 草地学报, 2024, 32(4): 1224-1233.

doi: 10.11733/j.issn.1007-0435.2024.04.027
WU Q, JU X, REN H Y, HAN G D. Precipitation regulates the response of ecosystem carbon exchange to warming and nitrogen addition in a desert steppe. Acta Agrestia Sinica, 2024, 32(4): 1224-1233. (in Chinese)

doi: 10.11733/j.issn.1007-0435.2024.04.027
[27]
杜晓铮, 赵祥, 王昊宇, 何斌. 陆地生态系统水分利用效率对气候变化的响应研究进展. 生态学报, 2018, 38(23): 8296-8305.
DU X Z, ZHAO X, WANG H Y, HE B. Responses of terrestrial ecosystem water use efficiency to climate change: A review. Acta Ecologica Sinica, 2018, 38(23): 8296-8305. (in Chinese)
[28]
韩再惠, 陈燕, 吴志俊, 任黎, 苗平, 马红丽. 气候变化对内蒙古温带草原生态系统碳、水通量及水分利用效率的影响. 水利规划与设计, 2024(2): 38-43, 67.
HAN Z H, CHEN Y, WU Z J, REN L, MIAO P, MA H L. Effects of climate change on carbon, water flux and water use efficiency in temperate grassland ecosystem in Inner Mongolia. Water Resources Planning and Design, 2024(2): 38-43, 67. (in Chinese)
[29]
刁治民, 朱锦福, 熊亚, 马寿福. 青海高寒草甸“蘑菇圈” 的研究. 青海师范大学学报(自然科学版), 2004, 20(4): 75-78.
DIAO Z M, ZHU J F, XIONG Y, MA S F. Study on the mushroom fairy-ring of alpine meadow in Qinghai province. Journal of Qinghai Normal University (Natural Science Edition), 2004, 20(4): 75-78. (in Chinese)
[30]
鲍士旦. 土壤农化分析. 3版 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[31]
项忠明, 刘俊杰, 张敏. 食用菌在立体农业中的作用和地位. 中国食用菌, 1997, 16(5): 6-8.
XIANG Z M, LIU J J, ZHANG M. Effect and position of edible mushrooms in stereoscopic agriculture. Edible Fungi of China, 1997, 16(5): 6-8. (in Chinese)
[32]
SHANTZ H L, PIEMEISEL R L. Fungus fairy rings in eastern colorado and their effect on vegetation. Journal of Agricultural Research, 1917, 11: 191.
[33]
XU X L, OUYANG H, CAO G M, RICHTER A, WANEK W, KUZYAKOV Y. Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant and Soil, 2011, 341(1): 495-504.
[34]
EDWARDS P J. The growth of fairy rings of Agaricus arvensis and their effect upon grassland vegetation and soil. The Journal of Ecology, 1984, 72(2): 505.
[35]
王素英, 闫伟. 蒙古口蘑 (Tricholoma mongolicum) 促进苦菜、生菜生长试验研究. 内蒙古农业大学学报(自然科学版), 2001, 22(4): 136-138.
WANG S Y, YAN W. Study on promotion of Tricholoma mongolicum to the growth of sowthistle and lettuce. Journal of Inner Mongola Institute of Agriculture and Animal Husbandry (Natural Science Edition), 2001, 22(4): 136-138. (in Chinese)
[36]
CHOI J H, ABE N, TANAKA H, FUSHIMI K, NISHINA Y, MORITA A, KIRIIWA Y, MOTOHASHI R, HASHIZUME D, KOSHINO H, KAWAGISHI H. Plant-growth regulator, imidazole- 4-carboxamide, produced by the fairy ring forming fungus Lepista sordida. Journal of Agricultural and Food Chemistry, 2010, 58(18): 9956-9959.
[37]
李海波, 吴学谦, 王立武, 付立忠, 魏海龙, 吴庆其. 青藏高原黄绿蜜环菌纯培养菌种的分离培养及分子鉴定. 菌物学报, 2008, 27(6): 873-883.
LI H B, WU X Q, WANG L W, FU L Z, WEI H L, WU Q Q. Pure culture isolation, cultivation and molecular identification of Armillaria luteo-virens from Tibet Plateau. Mycosystema, 2008, 27(6): 873-883. (in Chinese)
[38]
WANG L M, LI L H, CHEN X, TIAN X, WANG X K, LUO G P. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE, 2014, 9(4): e93566.
[39]
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555.
ZHANG D S, LI H B, SHEN J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555. (in Chinese)
[40]
苏世贤, 李婕, 徐彦军, 田风华, 须文, 李伟. 食用菌菌丝对菌材分解利用的研究进展. 云南大学学报(自然科学版), 2023, 45(3): 760-767.
SU S X, LI J, XU Y J, TIAN F H, XU W, LI W. Advances in decomposition and utilization of fungus-growing materials by edible fungi mycelia. Journal of Yunnan University (Natural Sciences Edition), 2023, 45(3): 760-767. (in Chinese)
[41]
LIU M H, WEI Y Q, LIAN L, ZHANG J L, LIU N, WILSON G W T, RILLIG M C, JIA S G, YANG G W, ZHANG Y J. Discovering the role of fairy ring fungi in accelerating nitrogen cycling to promote plant productivity in grasslands. Soil Biology and Biochemistry, 2024, 199: 109595.
[42]
张杰琦, 李奇, 任正炜, 杨雪, 王刚. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131.

doi: 10.3773/j.issn.1005-264x.2010.10.001
ZHANG J Q, LI Q, REN Z W, YANG X, WANG G. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. (in Chinese)
[43]
候文慧, 张玉霞, 王红静, 张庆昕, 侯美玲, 丛百明, 杜晓艳. 施氮水平对羊草叶片光合特性和叶绿素荧光特性的影响. 草地学报, 2021, 29(3): 531-536.

doi: 10.11733/j.issn.1007-0435.2021.03.014
HOU W H, ZHANG Y X, WANG H J, ZHANG Q X, HOU M L, CONG B M, DU X Y. Effects of nitrogen application level on leaf photosynthetic characteristics and chlorophyll fluorescence characteristics of Leymus chinensis. Acta Agrestia Sinica, 2021, 29(3): 531-536. (in Chinese)
[44]
翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响. 植物生态学报, 2017, 41(2): 196-208.

doi: 10.17521/cjpe.2016.0128
ZHAI Z W, GONG J R, LUO Q P, PAN Y, BAOYIN TAOGETAO, XU S, LIU M, YANG L L. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China. Chinese Journal of Plant Ecology, 2017, 41(2): 196-208. (in Chinese)
[45]
杨利民, 韩梅, 周广胜, 李建东. 中国东北样带关键种羊草水分利用效率与气孔密度. 生态学报, 2007, 27(1): 16-24.
YANG L M, HAN M, ZHOU G S, LI J D. The changes of water-use efficiency and Stoma density of Leymus chinensis along Northeast China Transect. Acta Ecologica Sinica, 2007, 27(1): 16-24. (in Chinese)
[1] DANG JianYou, JIANG WenChao, SUN Rui, SHANG BaoHua, PEI XueXia. Response of Wheat Grain Yield and Water Use Efficiency to Ploughing Time and Precipitation and Its Distribution in Dryland [J]. Scientia Agricultura Sinica, 2024, 57(6): 1049-1065.
[2] FAN KaiKai,TONG XuZe,YAN YuChun,XIN XiaoPing,WANG Xu. Effect of Fairy Rings on Soil Respiration in Hulunber Meadow Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2595-2603.
[3] ZHANG JianJun, FAN TingLu, DANG Yi, ZHAO Gang, WANG Lei, LI ShangZhong, WANG ShuYing, WANG Yong. Effects of Long-Term Tillage and Fertilization on Yield and Water Use Efficiency of Winter Wheat in Loess Dry Land Plateau [J]. Scientia Agricultura Sinica, 2017, 50(6): 1016-1030.
[4] ZHANG Su-yu, WANG He-zhou, YANG Ming-da, WANG Jing-li, HE De-xian. Influence of Returning Corn Stalks to Field Under Different Soil Moisture Contents on Root Growth and Water Use Efficiency of Wheat (Triticum aestivum L.) [J]. Scientia Agricultura Sinica, 2016, 49(13): 2484-2496.
[5] SA Ru-La-1, LI Jin-Xiang-2, HOU Xiang-Yang-1. Research on Soil Organic Carbon Storage Distribution in the Grassland Ecosystem [J]. Scientia Agricultura Sinica, 2013, 46(17): 3604-3614.
[6] GENG Yuan-Bo, SHI Jing-Jing. Application of the Carbon Isotope in the Partitioning of Soil Respiration in Grassland [J]. Scientia Agricultura Sinica, 2012, 45(17): 3541-3550.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!