Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4346-4356.doi: 10.3864/j.issn.0578-1752.2025.21.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Fertilization on Photosynthetic Carbon Allocation in Pasture Based on 13C Pulse-Labeling Experiments

XU XiuYuan1(), ZHANG HongZhi1, XU LiJun1(), XUE Wei1,2, NIE YingYing1, GUO MingYing3, LI JinXia4, ZHAO YaRu5, SHI MingJiang6   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Hulunbuir Grassland Ecosystem National Observation and Research Station, Beijing 100081
    2 Xishuangbanna Dai Autonomous Prefecture of Yunnan Province Meteorological Science and Technology Service Center, Xishuangbanna 666100, Yunnan
    3 Hulunbeir Forestry and Grassland Science Research Institute, Hulunbeir 021000, Inner Mongolia
    4 Hulunbuir Agricultural Reclamation Farm Co., Ltd, Hulunbuir 021000, Inner Mongolia
    5 Inner Mongolia Zhengshi Ecological Agriculture (Group) Co., Ltd., Hohhot 010000
    6 Hulunbuir Agricultural Reclamation Group Tenihe Farm Co., Ltd, Hulunbuir 022250, Inner Mongolia
  • Received:2024-11-11 Accepted:2024-12-17 Online:2025-11-01 Published:2025-11-06
  • Contact: XU LiJun

Abstract:

【Objective】Field experiments were conducted to examine the effects of nitrogen fertilization on the biomass yields of alfalfa and oat by measuring the plant’s 13C fixation and the 13C abundance in different plant organs, aiming to shed light on the transport and distribution of photosynthetic carbon in the plant-soil system and to explore effective means of soil carbon sequestration and soil quality improvement. 【Method】The 13C pulse labeling method was adopted in the field experiment. Two treatments were incorporated for alfalfa and oat crops, including nitrogen fertilization at 75 kg·hm-2 in addition to a control experiment (no nitrogen). Plant aboveground and belowground biomass were measured. 13C abundances in different plant organs were also measured. 【Result】Nitrogen fertilization increased soil organic carbon (SOC) content in oat plots, while no significant SOC effects were observed in alfalfa plots. However, nitrogen fertilization increased the leaf, stem, and root biomass in alfalfa by 117.5% for leaf and stem and 97.8% for roots. The biomass increases in oat under nitrogen fertilization were smaller than that in alfalfa. The aboveground and belowground biomass under nitrogen fertilization in oat was increased by 19.1% and 9.6%, respectively, compared with the control experiment. Moreover, nitrogen fertilization also increased 13C abundance in alfalfa and oat by 54.36‰ and 28.6‰, respectively. Additionally, more carbon was allocated to roots in alfalfa under nitrogen fertilization than the control experiment (11.5% versus 5%). No significant differences in carbon allocation were observed in oat, despite slight increases in root carbon allocation in oat. 【Conclusion】Nitrogen fertilization increased soil organic carbon content of alfalfa and oat, increased alfalfa biomass yield, and stimulated carbon allocation to roots in alfalfa. Nevertheless, nitrogen fertilization showed no significant effects on both carbon fixation and allocation in oat.

Key words: 13C pulse labeling, nitrogen fertilizer, alfalfa, oat, carbon allocation

Fig. 1

The root system structure of alfalfa and oats"

Table 1

The effects of different treatments on the physical and chemical properties of soil in alfalfa and oat fields"

土层
Soil layer (cm)
处理
Treatment
土壤有机碳
SOC (g·kg-1)
pH
黏粒
Clay (%)
粉粒
Silt (%)
砂粒
Sand (%)
0-10 A1 19.90±1.33Ba 7.40±0.27Aa 5.13±0.26Aa 47.23±2.29Aa 47.64±2.55Aa
A2 19.95±1.35Ba 7.67±0.47Aa 4.88±0.32Aa 46.99±0.68Aa 48.15±1.00Aa
B1 25.68±0.46Aa 6.95±0.09Ab 5.34±0.06Aa 45.90±1.11Ab 48.77±1.05Aab
B2 25.45±0.23Aa 7.17±0.12Aa 4.84±0.07Aa 50.08±2.03Aa 45.09±1.95Aa
10-20 A1 19.28±0.92Ba 7.55±0.56Aa 4.33±0.32Aa 44.90±2.75Aa 50.78±3.06Aa
A2 20.83±2.23Ba 7.84±0.82Aa 4.84±0.31Aa 47.17±3.99Aa 47.99±4.31Aa
B1 28.13±0.53ABa 8.08±0.09Aa 5.21±0.13Aa 53.90±0.71Aa 40.89±0.58Aa
B2 23.86±0.24Ab 7.44±0.68Aa 4.75±0.21Aa 51.63±0.93Aa 43.63±1.14Aa
20-30 A1 16.95±2.22Aa 7.36±0.28Aa 4.47±0.36Aa 44.82±0.42Aa 50.71±0.78Aa
A2 17.41±0.50Aa 7.66±0.64Aa 4.88±0.36Aa 42.82±0.33Aa 52.31±0.03Aa
B1 20.31±4.74Aa 7.00±0.95Ab 3.59±0.57Ab 43.10±2.57Ab 53.31±3.14Ab
B2 19.93±0.46Ac 7.19±0.05Aa 4.68±0.68Aa 43.90±5.75Aa 51.42±6.43Aa

Fig. 2

The biomass of root and shoot in alfalfa and oat Different capital letters indicated significant difference between different nitrogen levels in the same crop (P<0.05), and different lowercase letters indicated significant difference between different crops in the same nitrogen level (P<0.05)"

Fig. 3

13C abundance values of plant part"

Fig. 4

13C abundance values of rhizosphere soil"

Fig. 5

The amount of net photosynthetic fixation of 13C in plant part"

Fig. 6

The amount of net photosynthetic fixation of 13C in rhizosphere soil"

Fig. 7

Proportion of 13C in alfalfa- and oats-soil systems"

[1]
王智平, 陈全胜. 植物近期光合碳分配及转化. 植物生态学报, 2005, 29(5): 845-850.

doi: 10.17521/cjpe.2005.0112
WANG Z P, CHEN Q S. Recently photosynthesized carbon allocation and turnover: Minor review of the literature. Chinese Journal of Plant Ecology, 2005, 29(5): 845-850. (in Chinese)
[2]
祝贞科, 沈冰洁, 葛体达, 王久荣, 袁红朝, 吴金水. 农田作物同化碳输入与周转的生物地球化学过程. 生态学报, 2016, 36(19): 5987-5997.
ZHU Z K, SHEN B J, GE T D, WANG J R, YUAN H C, WU J S. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems. Acta Ecologica Sinica, 2016, 36(19): 5987-5997. (in Chinese)
[3]
CHENG M, YAO W J. Trend prediction of carbon peak in China’s animal husbandry based on the empirical analysis of 31 provinces in China. Environment, Development and Sustainability, 2024, 26(1): 2017-2034.
[4]
TANG H P, ZHANG X S. Establishment of optimized eco-productive paradigm in the farming-pastoral zone of northern China. Journal of Integrative Plant Biology, 2003, 45: 1166-1173.
[5]
FENG H B, DONG S G, LI Y, HU H Z, ZHANG T, LI Z K, LIU B W. Characterizing nitrogen distribution, source and transformation in groundwater of ecotone of agriculture-animal husbandry: An example from North China. Environmental Earth Sciences, 2020, 79(6): 133.
[6]
WANG H, HU Y F, YAN H M, LIANG Y T, GUO X, YE J Z. Trade-off among grain production, animal husbandry production, and habitat quality based on future scenario simulations in Xilinhot. The Science of the Total Environment, 2022, 817: 153015.
[7]
HUANG D, WANG K, WU W L. Problems and strategies for sustainable development of farming and animal husbandry in the Agro-Pastoral Transition Zone in Northern China (APTZNC). International Journal of Sustainable Development & World Ecology, 2007, 14(4): 391-399.
[8]
张向前, 路战远, 张德健, 程玉臣, 王玉芬, 方静, 史功赋, 郑海春, 王瑞, 王建国. 北方农牧交错区风蚀退化农田地力至损与培育研究. 北方农业学报, 2019, 47(6): 73-78.

doi: 10.3969/j.issn.2096-1197.2019.06.13
ZHANG X Q, LU Z Y, ZHANG D J, CHENG Y C, WANG Y F, FANG J, SHI G F, ZHENG H C, WANG R, WANG J G. Study on the soil strength loss and cultivation of wind-eroded farmland in the farming-pastoral crisscrossing area of Northern China. Journal of Northern Agriculture, 2019, 47(6): 73-78. (in Chinese)

doi: 10.3969/j.issn.2096-1197.2019.06.13
[9]
COOLEDGE E C, CHADWICK D R, SMITH L M, LEAKE J R, JONES D L. Agronomic and environmental benefits of reintroducing herb- and legume-rich multispecies leys into arable rotations: A review. Frontiers of Agricultural Science and Engineering, 2022, 9(2): 245-271.

doi: 10.15302/J-FASE-2021439
[10]
SOMENAHALLY A, DUPONT J I, BRADY J, MCLAWRENCE J, NORTHUP B, GOWDA P. Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems. Soil Biology and Biochemistry, 2018, 123: 126-135.
[11]
VAN DE BROEK M, GHIASI S, DECOCK C, HUND A, ABIVEN S, FRIEDLI C, WERNER R A, SIX J. The soil organic carbon stabilization potential of old and new wheat cultivars: A 13CO2-labeling study. Biogeosciences, 2020, 17(11): 2971-2986.
[12]
ZHANG X L, ZHAO Y Y, GAO W J, SONG X, ZHANG X T, SHI X Y, LI F M. Converting alfalfa pasture into annual cropland achieved high productivity and kept soil organic carbon in a semiarid area. Land Degradation & Development, 2021, 32(3): 1478-1486.
[13]
张林海, 曾从盛, 胡伟芳. 氮输入对植物光合固碳的影响研究进展. 生态学报, 2017, 37(1): 147-155.
ZHANG L H, ZENG C S, HU W F. Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation. Acta Ecologica Sinica, 2017, 37(1): 147-155. (in Chinese)
[14]
王明利. 着力草业扩面增量保障畜牧业高质量发展. 现代农业, 2023, 48(6): 3-6, 24.
WANG M L. Focusing on the expansion of pasture industry to ensure the high-quality development of livestock industry. Modern Agriculture, 2023, 48(6): 3-6, 24. (in Chinese)
[15]
田东海, 武俊英, 黄修梅, 刘景辉, 刘文惠. 内蒙古土默川平原不同牧草产量与品质差异研究. 湖北农业科学, 2013, 52(5): 1102-1104, 1108.
TIAN D H, WU J Y, HUANG X M, LIU J H, LIU W H. Research on hay yield and quality of different grass varieties in Inner Mongolia Tumochuan plain. Hubei Agricultural Sciences, 2013, 52(5): 1102-1104, 1108. (in Chinese)
[16]
REN H Y, HAN G D, SCHÖNBACH P, GIERUS M, TAUBE F. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecological Indicators, 2016, 60: 460-469.
[17]
刘峪廷, 靳慧卿, 尔墩扎玛, 刘丽平, 米福贵. 内蒙古呼和浩特市苜蓿种植经济效益分析: 以土默特左旗苜蓿种植园区为例. 畜牧与饲料科学, 2022, 43(3): 77-82.
LIU Y T, JIN H Q, ERDUNZHAMA, LIU L P, MI F G. Economic benefit analysis of alfalfa planting in Hohhot City, Inner Mongolia: Taking alfalfa planting park in tumed left banner as an example. Animal Husbandry and Feed Science, 2022, 43(3): 77-82. (in Chinese)
[18]
高锋. 内蒙古乌兰察布地区燕麦种植技术要点. 农业工程技术, 2022, 42(2): 72, 74.
GAO F. Key points of oat planting technology in Wulanchabu area of Inner Mongolia. Agricultural Engineering Technology, 2022, 42(2): 72, 74. (in Chinese)
[19]
周建, 张凤荣, 徐艳, 邱孟龙. 基于生态生产生活视角的北方农牧交错区土地宜耕性评价. 农业工程学报, 2019, 35(6): 253-260.
ZHOU J, ZHANG F R, XU Y, QIU M L. Land cultivation suitability evaluation of agro-pastoral ecotone in Northern China based on aspects of ecology, production and life. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 253-260. (in Chinese)
[20]
BROMAND S, WHALEN J K, JANZEN H H, SCHJOERRING J K, ELLERT B H. A pulse-labelling method to generate 13C- enriched plant materials. Plant and Soil, 2001, 235(2): 253-257.
[21]
VAN LAERE J, WILLEMEN A, DE BAUW P, HOOD-NOWOTNY R, MERCKX R, DERCON G. Carbon allocation in cassava is affected by water deficit and potassium application-A 13C-CO2 pulse labelling assessment. Rapid Communications in Mass Spectrometry: RCM, 2023, 37(2): e9426.
[22]
刘萍, 江春玉, 李忠佩. 13C脉冲标记定量研究施氮量对光合碳在水稻-土壤系统中分布的影响. 土壤学报, 2015, 52(3): 567-575.
LIU P, JIANG C Y, LI Z P. Quantitative research on effects of nitrogen application rate on distribution of photosynthetic carbon in rice-soil system using 13C pulse labeling technique. Acta Pedologica Sinica, 2015, 52(3): 567-575. (in Chinese)
[23]
QU Q, DENG L, GUNINA A, HAI X Y, DENG J, SHANGGUAN Z P, KUZYAKOV Y. Grazing exclusion increases soil organic C through microbial necromass of root-derived C as traced by 13C labelling photosynthate. Biology and Fertility of Soils, 2024, 60(3): 407-420.
[24]
王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21(3): 282-289.
WANG Y Z, LIU X W, SUN H Y, ZHANG X Y, ZHANG L R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chinese Journal of Eco-Agriculture, 2013, 21(3): 282-289. (in Chinese)
[25]
WANG C, XIAO R, CUI Y, MA Z W, GUO Y T, WANG Q, XIU Y J, ZHANG M X. Photosynthate-13C allocation in the plant-soil system after 13C-pulse labeling of Phragmites australis in different salt marshes. Geoderma, 2019, 347: 252-261.
[26]
ZHOU Y J, ZHANG J W, XU L, XU C S, CHEN H, MIAO C R, LI W W, JIANG Y, DING Y F, LIU Z H, LI G H. Long-term fertilizer postponing increases soil carbon sequestration by changing microbial composition in paddy soils: A 13CO2 labelling and PLFA study. Soil Biology and Biochemistry, 2023, 180: 108996.
[27]
LEAKE J R, OSTLE N J, RANGEL-CASTRO J I, JOHNSON D. Carbon fluxes from plants through soil organisms determined by field 13CO2 pulse-labelling in an upland grassland. Applied Soil Ecology, 2006, 33(2): 152-175.
[28]
齐鑫, 王敬国. 应用13C脉冲标记方法研究不同施氮量对冬小麦净光合碳分配及其向地下输入的影响. 农业环境科学学报, 2008, 27(6): 2524-2530.
QI X, WANG J G. Distribution and translocation of assimilated C pulse-labeled with 13C for winter wheat (Trticum aestivums L.),as affected by nitrogen supply. Journal of Agro-Environment Science, 2008, 27(6): 2524-2530. (in Chinese)
[29]
KAGAWA A, SUGIMOTO A, MAXIMOV T C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant, Cell & Environment, 2006, 29(8): 1571-1584.
[30]
KAGAWA A, SUGIMOTO A, YAMASHITA K, ABE H. Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant, Cell & Environment, 2005, 28(7): 906-915.
[31]
孙昭安, 朱彪, 张译文, 李梦雨, 孟凡乔. 小麦和玉米生长对土壤碳输入和输出的贡献. 农业环境科学学报, 2021, 40(10): 2257-2265.
SUN Z A, ZHU B, ZHANG Y W, LI M Y, MENG F Q. Contributions of wheat and maize growth to soil carbon input and output. Journal of Agro-Environment Science, 2021, 40(10): 2257-2265. (in Chinese)
[32]
张芳超, 卢伟伟, 查全智. 标记停留时间对水稻及其生物质炭的13C和15N丰度的影响. 土壤学报, 2024, 61(1): 77-85.
ZHANG F C, LU W W, ZHA Q Z. Effects of residence time on 13C and 15N abundances of rice and rice-derived biochars after a dual isotope labeling. Acta Pedologica Sinica, 2024, 61(1): 77-85. (in Chinese)
[33]
GRIFFITHS R I, MANEFIELD M, OSTLE N, MCNAMARA N, O'DONNELL A G, BAILEY M J, WHITELEY A S. 13CO2 pulse labelling of plants in tandem with stable isotope probing: Methodological considerations for examining microbial function in the rhizosphere. Journal of Microbiological Methods, 58(1): 119-129.
[34]
WERTH M, KUZYAKOV Y. Assimilate partitioning affects 13C fractionation of recently assimilated carbon in maize. Plant and Soil, 2006, 284(1): 319-333.
[35]
LU Y H, WATANABE A, KIMURA M. Carbon dynamics of rhizodeposits, root- and shoot-residues in a rice soil. Soil Biology and Biochemistry, 2003, 35(9): 1223-1230.
[36]
安婷婷, 汪景宽, 李双异, 付时丰, 裴久渤, 李慧. 用13C脉冲标记方法研究施肥与地膜覆盖对玉米光合碳分配的影响. 土壤学报, 2013, 50(5): 948-955.
AN T T, WANG J K, LI S Y, FU S F, PEI J B, LI H. Effect of fertilization and plastic film mulching on distribution of photosynthetically fixed carbon in maize: Explored with 13C pulse labeling technique. Acta Pedologica Sinica, 2013, 50(5): 948-955. (in Chinese)
[37]
BOWMAN D M J S, COOK G D. Can stable carbon isotopes (δ13C) in soil carbon be used to describe the dynamics of Eucalyptus savanna -rainforest-rainforest boundaries in the Australian monsoon tropics? Austral Ecology, 2008, 27(1): 94-102.
[38]
梁国鹏, HOUSSOU A A, 吴会军, 武雪萍, 蔡典雄, 高丽丽, 李景, 王碧胜, 李生平. 施氮量对夏玉米根际和非根际土壤酶活性及氮含量的影响. 应用生态学报, 2016, 27(6): 1917-1924.

doi: 10.13287/j.1001-9332.201606.031
LIANG G P, HOUSSOU A A, WU H J, WU X P, CAI D X, GAO L L, LI J, WANG B S, LI S P. Soil nitrogen content and enzyme activities in rhizosphere and non-rhizosphere of summer maize under different nitrogen application rates. Chinese Journal of Applied Ecology, 2016, 27(6): 1917-1924. (in Chinese)
[39]
鲍根生, 李媛, 冯晓云, 张鹏, 孟思宇. 高寒区氮添加和间作种植互作对燕麦和豌豆根系构型影响的研究. 草业学报, 2024, 33(3): 73-84.

doi: 10.11686/cyxb2023155
BAO G S, LI Y, FENG X Y, ZHANG P, MENG S Y. Interactive effects of intercropping patterns and nitrogen addition on root architectural characteristics of oat and pea in an alpine region. Acta Prataculturae Sinica, 2024, 33(3): 73-84. (in Chinese)
[40]
侯慧云, 高峰, 高同国, 朱宝成. 施氮对大豆结瘤、固氮及产量影响的研究进展. 江苏农业科学, 2022, 50(8): 42-48.
HOU H Y, GAO F, GAO T G, ZHU B C. Research progress on the effect of nitrogen application on nodulation, nitrogen fixation and yield of soybean. Jiangsu Agricultural Sciences, 2022, 50(8): 42-48. (in Chinese)
[41]
任逸文, 肖谋良, 袁红朝, 祝贞科, 李巧云, 葛体达, 苏以荣, 吴金水. 水稻光合碳在植物-土壤系统中的分配及其对CO2升高和施氮的响应. 应用生态学报, 2018, 29(5): 1397-1404.

doi: 10.13287/j.1001-9332.201805.021
REN Y W, XIAO M L, YUAN H C, ZHU Z K, LI Q Y, GE T D, SU Y R, WU J S. Allocation of rice photosynthates in plant-soil system in response to elevated CO2 and nitrogen fertilization. Chinese Journal of Applied Ecology, 2018, 29(5): 1397-1404. (in Chinese)
[42]
孔玉华, 朱庆征, 曲安然, 朱龙飞, 杨小燕. 基于13C脉冲标记法探究种植密度对侧柏幼苗生长及光合碳分配的影响. 甘肃农业大学学报, 2022, 57(1): 131-138.
KONG Y H, ZHU Q Z, QU A R, ZHU L F, YANG X Y. Effect of planting density on photosynthetic carbon distribution of Platycladus orientalis seedlings based on 13C pulse labeling method. Journal of Gansu Agricultural University, 2022, 57(1): 131-138. (in Chinese)
[43]
HAYES J M. Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence. Marine Geology, 1993, 113(1/2): 111-125.
[44]
KAŠTOVSKÁ E, ŠANTRŮČKOVÁ H. Fate and dynamics of recently fixed C in pasture plant-soil system under field conditions. Plant and Soil, 2007, 300(1): 61-69.
[45]
李银坤, 陈敏鹏, 夏旭, 梅旭荣, 李昊儒, 郝卫平. 不同氮水平下夏玉米农田土壤呼吸动态变化及碳平衡研究. 生态环境学报, 2013, 22(1): 18-24.
LI Y K, CHEN M P, XIA X, MEI X R, LI H R, HAO W P. Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition. Ecology and Environmental Sciences, 2013, 22(1): 18-24. (in Chinese)
[46]
贾志锋, 马祥, 琚泽亮, 刘凯强, 赵桂琴. 施氮量和播种量对燕麦光合特性、激素含量及种子产量的影响. 草地学报, 2021, 29(2): 293-302.

doi: 10.11733/j.issn.1007-0435.2021.02.010
JIA Z F, MA X, JU Z L, LIU K Q, ZHAO G Q. Effects of nitrogen application rate and sowing rate on photosynthetic characteristics, phytohormone content and grain yield of oat. Acta Agrestia Sinica, 2021, 29(2): 293-302. (in Chinese)
[47]
郑敏娜, 梁秀芝, 康佳惠, 李荫藩, 王慧, 韩志顺, 陈燕妮. 不同施氮量对饲用燕麦光合特性及氮素光合利用效率的影响. 作物杂志, 2022(4): 249-254.
ZHENG M N, LIANG X Z, KANG J H, LI Y F, WANG H, HAN Z S, CHEN Y N. Effects of different nitrogen application rates on photosynthetic characteristics and nitrogen photosynthetic utilization efficiency of fed oats. Crops, 2022(4): 249-254. (in Chinese)
[1] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[2] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[3] WANG WenJuan, SHI ShangLi, KANG WenJuan, DU YuanYuan, YIN Chen. The Physiological Response of Longzhong Alfalfa to Exogenous Spermine Under Drought Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 676-691.
[4] WANG Niu, SHI XinRan, ZHANG WeiDong, WANG Xin. Effect of FGF5 and FGF21 on Proliferation of Dermal Papilla Cells in Cashmere Goat [J]. Scientia Agricultura Sinica, 2025, 58(4): 819-830.
[5] WANG Zhao, ZHANG Bing, DONG SiQi, HU YuXi, QI ShuYu, FENG GuoZhong, GAO Qiang, ZHOU Xue. Effects of Long-Term Nitrogen Fertilizer Application on the Rhizosphere Microbial Community Structure and Function in Black Soil and Sandy Soil [J]. Scientia Agricultura Sinica, 2025, 58(3): 520-536.
[6] WANG JiaXin, HU JingYi, ZHANG Wei, WEI Qian, WANG Tao, WANG XiaoLin, ZHANG Xiong, ZHANG PanPan. Effects of Different Mulching Methods on the Production of Photosynthetic Substances and Water Use Efficiency of Intercropped Maize [J]. Scientia Agricultura Sinica, 2025, 58(3): 460-477.
[7] ZHANG Fan, YANG QingChuan. The Breeding History, Current Status and Prospects of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4471-4481.
[8] LÜ HuanHuan, LI RuYue, LIU QingSong, XU Lei, XU YanRan, YU HaoJie, GUO ChangHong, LONG RuiCai. Cloning and Salt Tolerance Function Analysis of MsKTI3 Gene in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4497-4511.
[9] YANG YongNian, ZENG XiangCui, LIU QingSong, LI RuYue, LONG RuiCai, CHEN Lin, WANG Xue, HE Fei, KANG JunMei, LI MingNa. Differential Proteomic Analysis of Alfalfa Seedlings Under Salt- Alkaline Stress [J]. Scientia Agricultura Sinica, 2025, 58(21): 4512-4527.
[10] HUANG HongMei, WANG SiQi, YANG QingChuan, GUO ChangHong, WANG Xue. Phosphate Transporter MsPT5 Regulates Phosphate Uptake and Utilization in Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(21): 4544-4556.
[11] BAO MingFang, QIN Yan, CHEN CaiJin, ZHANG ShangPei, ZHANG GuoHui, SHA XiaoDi. Evaluation of 111 Alfalfa Germplasm Resources for Seedling Phenotypic Drought Tolerance Characterization [J]. Scientia Agricultura Sinica, 2025, 58(19): 3825-3836.
[12] LI RuoHong, MA Wen, ZHAO ShiQiang, MAO PeiSheng. Antioxidant Physiology and Hormonal Response Pattern of Embryonic Root Mitochondria During Imbibition of Aging Seeds of Alfalfa [J]. Scientia Agricultura Sinica, 2025, 58(19): 4014-4025.
[13] REN JiaHui, SUN JuanJuan, HAO YingLu, WANG FengWu, WANG JingYu, ZHANG MingWei, LI BaoHan, ZHENG ChengZhong, HE ZhuQing, WANG ZhaoLan. Screening of Feed Oat Varieties and Its Evaluation of Silage Quality in Central Inner Mongolia [J]. Scientia Agricultura Sinica, 2025, 58(19): 4026-4038.
[14] ZHAO KaiNan, ZHAO XinHao, JIANG ZongHao, PENG KeYan, LÜ Peng, WANG ZongShuai, LI HuaWei, FENG Bo, SI JiSheng, ZHANG Bin, WANG FaHong, LI ShengDong. Effects of Double-Pressing Precision Uniform Sowing and Nitrogen Fertilizer Application Rates on Population Structure, Grain Yield, and Economic Benefit of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(18): 3616-3631.
[15] ZHANG HuanHuan, ZHANG DiaoLiang, WANG XiaoLi, CHEN Han, SHAO Juan, YIN Wen, HU FaLong, CHAI Qiang, FAN ZhiLong. Effects of Green Manure and Wheat Straw Combined Returning Application on Photosynthetic Characteristics and Yield of Spring Wheat Under Reduced Nitrogen Levels [J]. Scientia Agricultura Sinica, 2025, 58(17): 3461-3472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!